Cargando…

Putative HIV and SIV G-Quadruplex Sequences in Coding and Noncoding Regions Can Form G-Quadruplexes

The HIV virus is one of the most studied viruses in the world. This is especially true in terms of gene sequencing, and to date more than 9 thousand genomic sequences of HIV isolates have been sequenced and analyzed. In this study, a series of DNA sequences, which have the potential to form G-quadru...

Descripción completa

Detalles Bibliográficos
Autores principales: Krafčíková, Petra, Demkovičová, Erika, Halaganová, Andrea, Víglaský, Viktor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804116/
https://www.ncbi.nlm.nih.gov/pubmed/29464116
http://dx.doi.org/10.1155/2017/6513720
Descripción
Sumario:The HIV virus is one of the most studied viruses in the world. This is especially true in terms of gene sequencing, and to date more than 9 thousand genomic sequences of HIV isolates have been sequenced and analyzed. In this study, a series of DNA sequences, which have the potential to form G-quadruplex structures, is analyzed. Several such sequences were found in various coding and noncoding virus domains, including the U3 LTR, tat, rev, env, and vpx regions. Interestingly, a homological sequence to the already well-known HIV integrase aptamer was identified in the minus-strand. The sequences derived from original isolates were analyzed using standard spectral and electrophoretic methods. In addition, a recently developed methodology is applied which uses induced circular dichroism spectral profiles of G-quadruplex-ligand (Thiazole Orange) complexes to determine if G-rich sequences can adopt G-quadruplex structure. Targeting the G-quadruplexes or peptide domains corresponding to the G-rich coding sequence in HIV offers researchers attractive therapeutic targets which would be of particular use in the development of novel antiviral therapies. The analysis of G-rich regions can provide researchers with a path to find specific targets which could be of interest for specific types of virus.