Cargando…
Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks
BACKGROUND: Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804323/ https://www.ncbi.nlm.nih.gov/pubmed/29423348 http://dx.doi.org/10.7717/peerj.4344 |
_version_ | 1783298825032564736 |
---|---|
author | Sadeghi-Nassaj, Seyed Mohammad Catalá, Teresa S. Álvarez, Pedro A. Reche, Isabel |
author_facet | Sadeghi-Nassaj, Seyed Mohammad Catalá, Teresa S. Álvarez, Pedro A. Reche, Isabel |
author_sort | Sadeghi-Nassaj, Seyed Mohammad |
collection | PubMed |
description | BACKGROUND: Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. METHODS: During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian) only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and –holothurians (−H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. RESULTS: In the time-series, absorption coefficients at 325 nm (a(325)) and spectral slopes from 275 to 295 nm (S(275−295)) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m(−1) and 16 µm(−1), respectively) than in the effluent of the −holothurian tank (average: 0.69 m(−1) and 34 µm(−1), respectively), the former being similar to those found in the inlet waters (average: 0.32 m(−1) and 22 µm(−1), respectively). This reduction in the absorption of the dissolved organic matter appears to be mediated by the POM consumption by holothurians. The experiments confirmed the results observed in the time-series. The a(325) and S(275−295) values were significantly lower in the treatment with holothurians than in the treatment without holothurians indicating a reduction in the concentration of chromophoric organic compounds, particularly of low molecular weight. DISCUSSION: Consequently, sea cucumbers appear to improve water transparency in aquaculture tanks. The underlying mechanism of this improvement might be related to the POM consumption by holothurians, which reduces the concentration of CDOM derived from POM disaggregation or to the direct assimilation of dissolved compounds of low molecular weight as chromophoric amino acids. |
format | Online Article Text |
id | pubmed-5804323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58043232018-02-08 Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks Sadeghi-Nassaj, Seyed Mohammad Catalá, Teresa S. Álvarez, Pedro A. Reche, Isabel PeerJ Aquaculture, Fisheries and Fish Science BACKGROUND: Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. METHODS: During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian) only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and –holothurians (−H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. RESULTS: In the time-series, absorption coefficients at 325 nm (a(325)) and spectral slopes from 275 to 295 nm (S(275−295)) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m(−1) and 16 µm(−1), respectively) than in the effluent of the −holothurian tank (average: 0.69 m(−1) and 34 µm(−1), respectively), the former being similar to those found in the inlet waters (average: 0.32 m(−1) and 22 µm(−1), respectively). This reduction in the absorption of the dissolved organic matter appears to be mediated by the POM consumption by holothurians. The experiments confirmed the results observed in the time-series. The a(325) and S(275−295) values were significantly lower in the treatment with holothurians than in the treatment without holothurians indicating a reduction in the concentration of chromophoric organic compounds, particularly of low molecular weight. DISCUSSION: Consequently, sea cucumbers appear to improve water transparency in aquaculture tanks. The underlying mechanism of this improvement might be related to the POM consumption by holothurians, which reduces the concentration of CDOM derived from POM disaggregation or to the direct assimilation of dissolved compounds of low molecular weight as chromophoric amino acids. PeerJ Inc. 2018-02-05 /pmc/articles/PMC5804323/ /pubmed/29423348 http://dx.doi.org/10.7717/peerj.4344 Text en ©2018 Sadeghi-Nassaj et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Aquaculture, Fisheries and Fish Science Sadeghi-Nassaj, Seyed Mohammad Catalá, Teresa S. Álvarez, Pedro A. Reche, Isabel Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
title | Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
title_full | Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
title_fullStr | Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
title_full_unstemmed | Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
title_short | Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
title_sort | sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks |
topic | Aquaculture, Fisheries and Fish Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804323/ https://www.ncbi.nlm.nih.gov/pubmed/29423348 http://dx.doi.org/10.7717/peerj.4344 |
work_keys_str_mv | AT sadeghinassajseyedmohammad seacucumbersreducechromophoricdissolvedorganicmatterinaquaculturetanks AT catalateresas seacucumbersreducechromophoricdissolvedorganicmatterinaquaculturetanks AT alvarezpedroa seacucumbersreducechromophoricdissolvedorganicmatterinaquaculturetanks AT recheisabel seacucumbersreducechromophoricdissolvedorganicmatterinaquaculturetanks |