Cargando…
Neyman-Pearson classification algorithms and NP receiver operating characteristics
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this...
Autores principales: | Tong, Xin, Feng, Yang, Li, Jingyi Jessica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804623/ https://www.ncbi.nlm.nih.gov/pubmed/29423442 http://dx.doi.org/10.1126/sciadv.aao1659 |
Ejemplares similares
-
Goodness of fit by Neyman-Pearson testing
por: Grosso, Gaia, et al.
Publicado: (2023) -
Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing
por: Perezgonzalez, Jose D.
Publicado: (2015) -
Neyman
por: Reid, Constance
Publicado: (1998) -
Fisher, Neyman, and the Creation of Classical Statistics
por: Lehmann, Erich L
Publicado: (2011) -
Machine Learning Multi-Stage Classification and Regression in the Search for Vector-like Quarks and the Neyman Construction in Signal Searches
por: Leone, Robert Matthew
Publicado: (2017)