Cargando…
Does growth differentiation factor 11 protect against myocardial ischaemia/reperfusion injury? A hypothesis
The pathogenesis of myocardial ischaemia/reperfusion injury is multifactorial. Understanding the mechanisms of myocardial ischaemia/reperfusion will benefit patients with ischaemic heart disease. Growth differentiation factor 11 (GDF11), a member of the secreted transforming growth factor-β superfam...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805180/ https://www.ncbi.nlm.nih.gov/pubmed/27565745 http://dx.doi.org/10.1177/0300060516658984 |
Sumario: | The pathogenesis of myocardial ischaemia/reperfusion injury is multifactorial. Understanding the mechanisms of myocardial ischaemia/reperfusion will benefit patients with ischaemic heart disease. Growth differentiation factor 11 (GDF11), a member of the secreted transforming growth factor-β superfamily, has been found to reverse age-related hypertrophy, revealing the important role of GDF11 in cardiovascular disease. However, the functions of GDF11 in myocardial ischaemia/reperfusion have not been elucidated yet. A number of signalling molecules are known to occur downstream of GDF11, including mothers against decapentaplegic homolog 3 (SMAD3) and forkhead box O3a (FOXO3a). A hypothesis is presented that GDF11 has protective effects in acute myocardial ischaemia/reperfusion injury through suppression of oxidative stress, prevention of calcium ion overload and promotion of the elimination of abnormal mitochondria via both canonical (SMAD3) and non-canonical (FOXO3a) pathways. Since circulating GDF11 may mainly derive from the spleen, the lack of a spleen may make the myocardium susceptible to damaging insults. Administration of GDF11 may be an efficacious therapy to protect against cardiovascular diseases in splenectomized patients. |
---|