Cargando…
Solution Structure and Elevator Mechanism of the Membrane Electron Transporter CcdA
Membrane oxidoredutase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism which has not been elucidated. Here we report an NMR structure of the Thermus t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805637/ https://www.ncbi.nlm.nih.gov/pubmed/29379172 http://dx.doi.org/10.1038/s41594-018-0022-z |
Sumario: | Membrane oxidoredutase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism which has not been elucidated. Here we report an NMR structure of the Thermus thermophilus CcdA (TtCcdA) in an oxidized and outward-facing state. CcdA consists of two inverted structural repeats of three transmembrane helices (2 × 3-TM). We computationally modeled and experimentally validated an inward-facing state, which suggests that CcdA uses an elevator-type movement to shuttle the reactive cysteines across the membrane. CcdA belongs to the LysE superfamily. Its structure may be relevant to other LysE clan transporters. Structure comparisons of CcdA, semiSWEET, Pnu, and major facilitator superfamily (MFS) transporters provide insights about membrane transporter architecture and mechanism. |
---|