Cargando…
Impact of Synaptic Device Variations on Pattern Recognition Accuracy in a Hardware Neural Network
Neuromorphic systems (hardware neural networks) derive inspiration from biological neural systems and are expected to be a computing breakthrough beyond conventional von Neumann architecture. Interestingly, in neuromorphic systems, the processing and storing of information can be performed simultane...
Autores principales: | Kim, Sungho, Lim, Meehyun, Kim, Yeamin, Kim, Hee-Dong, Choi, Sung-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805704/ https://www.ncbi.nlm.nih.gov/pubmed/29422641 http://dx.doi.org/10.1038/s41598-018-21057-x |
Ejemplares similares
-
Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network
por: Kim, Sungho, et al.
Publicado: (2019) -
Binarized Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern Classification
por: Kim, Sungho, et al.
Publicado: (2019) -
Determination of individual contact interfaces in carbon nanotube network-based transistors
por: Yoon, Jinsu, et al.
Publicado: (2017) -
On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices
por: Kwon, Dongseok, et al.
Publicado: (2020) -
Hardware Realization of the Pattern Recognition with an Artificial Neuromorphic Device Exhibiting a Short-Term Memory
por: Przyczyna, Dawid, et al.
Publicado: (2019)