Cargando…
Ultrafast ion sieving using nanoporous polymeric membranes
The great potential of nanoporous membranes for water filtration and chemical separation has been challenged by the trade-off between selectivity and permeability. Here we report on nanoporous polymer membranes with an excellent balance between selectivity and permeability of ions. Our membranes are...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805712/ https://www.ncbi.nlm.nih.gov/pubmed/29422511 http://dx.doi.org/10.1038/s41467-018-02941-6 |
Sumario: | The great potential of nanoporous membranes for water filtration and chemical separation has been challenged by the trade-off between selectivity and permeability. Here we report on nanoporous polymer membranes with an excellent balance between selectivity and permeability of ions. Our membranes are fabricated by irradiating 2-μm-thick polyethylene terephthalate Lumirror® films with GeV heavy ions followed by ultraviolet exposure. These membranes show a high transport rate of K(+) ions of up to 14 mol h(−1) m(−2) and a selectivity of alkali metal ions over heavy metal ions of >500. Combining transport experiments and molecular dynamics simulations with a polymeric nanopore model, we demonstrate that the high permeability is attributable to the presence of nanopores with a radius of ~0.5 nm and a density of up to 5 × 10(10) cm(−2), and the selectivity is ascribed to the interaction between the partially dehydrated ions and the negatively charged nanopore wall. |
---|