Cargando…

Role of Precursor Carbides for Graphene Growth on Ni(111)

Surface X-ray Diffraction was used to study the transformation of a carbon-supersaturated carbidic precursor toward a complete single layer of graphene in the temperature region below 703 K without carbon supply from the gas phase. The excess carbon beyond the 0.45  monolayers of C atoms within a si...

Descripción completa

Detalles Bibliográficos
Autores principales: Rameshan, Raffael, Vonk, Vedran, Franz, Dirk, Drnec, Jakub, Penner, Simon, Garhofer, Andreas, Mittendorfer, Florian, Stierle, Andreas, Klötzer, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805774/
https://www.ncbi.nlm.nih.gov/pubmed/29422517
http://dx.doi.org/10.1038/s41598-018-20777-4
Descripción
Sumario:Surface X-ray Diffraction was used to study the transformation of a carbon-supersaturated carbidic precursor toward a complete single layer of graphene in the temperature region below 703 K without carbon supply from the gas phase. The excess carbon beyond the 0.45  monolayers of C atoms within a single Ni(2)C layer is accompanied by sharpened reflections of the |4772| superstructure, along with ring-like diffraction features resulting from non-coincidence rotated Ni(2)C-type domains. A dynamic Ni(2)C reordering process, accompanied by slow carbon loss to subsurface regions, is proposed to increase the Ni(2)C 2D carbide long-range order via ripening toward coherent domains, and to increase the local supersaturation of near-surface dissolved carbon required for spontaneous graphene nucleation and growth. Upon transformation, the intensities of the surface carbide reflections and of specific powder-like diffraction rings vanish. The associated change of the specular X-ray reflectivity allows to quantify a single, fully surface-covering layer of graphene (2 ML C) without diffraction contributions of rotated domains. The simultaneous presence of top-fcc and bridge-top configurations of graphene explains the crystal truncation rod data of the graphene-covered surface. Structure determination of the |4772| precursor surface-carbide using density functional theory is in perfect agreement with the experimentally derived X-ray structure factors.