Cargando…

Emergence and dynamics of self-producing information niches as a step towards pre-evolutionary organization

As a step towards understanding pre-evolutionary organization in non-genetic systems, we develop a model to investigate the emergence and dynamics of proto-autopoietic networks in an interacting population of simple information processing entities (automata). Our simulations indicate that dynamicall...

Descripción completa

Detalles Bibliográficos
Autores principales: Carter, Richard J., Wiesner, Karoline, Mann, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805983/
https://www.ncbi.nlm.nih.gov/pubmed/29343630
http://dx.doi.org/10.1098/rsif.2017.0807
Descripción
Sumario:As a step towards understanding pre-evolutionary organization in non-genetic systems, we develop a model to investigate the emergence and dynamics of proto-autopoietic networks in an interacting population of simple information processing entities (automata). Our simulations indicate that dynamically stable strongly connected networks of mutually producing communication channels emerge under specific environmental conditions. We refer to these distinct organizational steady states as information niches. In each case, we measure the information content by the Shannon entropy, and determine the fitness landscape, robustness and transition pathways for information niches subjected to intermittent environmental perturbations under non-evolutionary conditions. By determining the information required to generate each niche, we show that niche transitions are only allowed if accompanied by an equal or increased level of information production that arises internally or via environmental perturbations that serve as an exogenous source of population diversification. Overall, our simulations show how proto-autopoietic networks of basic information processors form and compete, and under what conditions they persist over time or go extinct. These findings may be relevant to understanding how inanimate systems such as chemically communicating protocells can initiate the transition to living matter prior to the onset of contemporary evolutionary and genetic mechanisms.