Cargando…

Early evaluation of radiation-induced parotid damage in patients with nasopharyngeal carcinoma by T2 mapping and mDIXON Quant imaging: initial findings

BACKGROUND: Radiation-induced parotid damage is a common complication in patients with nasopharyngeal carcinoma (NPC) treated with radiotherapy to head and neck region, which severely reduce the life quality of those patients. The aim of this study was to early evaluate the changes of irradiated par...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Nan, Chu, Chen, Dou, Xin, Chen, Weibo, He, Jian, Yan, Jing, Zhou, Zhengyang, Yang, Xiaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806279/
https://www.ncbi.nlm.nih.gov/pubmed/29422068
http://dx.doi.org/10.1186/s13014-018-0970-9
Descripción
Sumario:BACKGROUND: Radiation-induced parotid damage is a common complication in patients with nasopharyngeal carcinoma (NPC) treated with radiotherapy to head and neck region, which severely reduce the life quality of those patients. The aim of this study was to early evaluate the changes of irradiated parotid glands with T2 mapping and mDIXON Quant imaging. METHODS: Forty-one patients with NPC underwent conventional magnetic resonance imaging for nasopharynx and neck, and T2 mapping and mDIXON Quant imaging for bilateral parotid glands within 2 weeks before radiotherapy (pre-RT), 5 weeks after the beginning of radiotherapy (mid-RT), and 4 weeks after radiotherapy (post-RT). Parotid volume, T2 values, fat fraction (FF) values, and mean radiation dose were recorded and analyzed. RESULTS: From pre-RT to mid-RT, parotid volume decreased (atrophy rate, 27.0 ± 11.5%), while parotid T2 and FF values increased (change rate, 6.0 ± 6.2% for T2 value and 9.1 ± 9.9% for FF value) significantly. From mid-RT to post-RT, parotid T2 value continuously increased (change rate, 4.6 ± 7.7%), but parotid FF value decreased (change rate, − 9.9 ± 18.2%) significantly. Change rate of parotid T2 value significantly correlated with parotid atrophy rate from pre-RT to post-RT (r = 0.313, P = 0.027). Multiple linear regression analysis showed that parotid T2 value (standardized coefficient [SC] = − 0.259, P = 0.001) and FF value (SC = − 0.320, P = 0.014) negatively correlated with parotid volume, while parotid T2 value positively correlated with MR scan time point (SC = 0.476, P = 0.001) significantly. Parotid T2 and FF values showed excellent reproducibility (intraclass correlation coefficient, 0.935–0.992). CONCLUSIONS: T2 mapping and mDIXON Quant imaging is useful for noninvasive evaluation of radiation-induced parotid damage.