Cargando…
Citizen crowds and experts: observer variability in image-based plant phenotyping
BACKGROUND: Image-based plant phenotyping has become a powerful tool in unravelling genotype–environment interactions. The utilization of image analysis and machine learning have become paramount in extracting data stemming from phenotyping experiments. Yet we rely on observer (a human expert) input...
Autores principales: | Giuffrida, M. Valerio, Chen, Feng, Scharr, Hanno, Tsaftaris, Sotirios A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806457/ https://www.ncbi.nlm.nih.gov/pubmed/29449872 http://dx.doi.org/10.1186/s13007-018-0278-7 |
Ejemplares similares
-
Editorial: Computer vision in plant phenotyping and agriculture
por: Stavness, Ian, et al.
Publicado: (2023) -
Doing More With Less: A Multitask Deep Learning Approach in Plant Phenotyping
por: Dobrescu, Andrei, et al.
Publicado: (2020) -
Pheno‐Deep Counter: a unified and versatile deep learning architecture for leaf counting
por: Giuffrida, Mario Valerio, et al.
Publicado: (2018) -
Semi-Supervised Domain Adaptation for Holistic Counting under Label Gap
por: Litrico, Mattia, et al.
Publicado: (2021) -
Continuity vs. the Crowd—Tradeoffs Between Continuous and Intermittent Citizen Hydrology Streamflow Observations
por: Davids, Jeffrey C., et al.
Publicado: (2017)