Cargando…
Sevoflurane modulates the release of reactive oxygen species, myeloperoxidase, and elastase in human whole blood: Effects of different stimuli on neutrophil response to volatile anesthetic in vitro
Volatile anesthetics have been shown to modulate polymorphonuclear neutrophil (PMN) functions. The aim of this study was to examine the impact of clinically relevant concentrations of sevoflurane (SEVO), a volatile anesthetic, on the release of reactive oxygen species (ROS), myeloperoxidase (MPO), a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806810/ https://www.ncbi.nlm.nih.gov/pubmed/29087224 http://dx.doi.org/10.1177/0394632017739530 |
Sumario: | Volatile anesthetics have been shown to modulate polymorphonuclear neutrophil (PMN) functions. The aim of this study was to examine the impact of clinically relevant concentrations of sevoflurane (SEVO), a volatile anesthetic, on the release of reactive oxygen species (ROS), myeloperoxidase (MPO), and elastase (EL) from human activated PMNs. For this purpose, samples of whole blood were collected from healthy volunteers and exposed in vitro to 2.3% or 4.6% SEVO in air. To assess for a stimulus-dependent effect of the volatile anesthetic, PMNs were activated using different validated protocols. Artificial stimulation of neutrophils involved either a combination of cytochalasin B (CB) and N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate 13-acetate (PMA). In addition, a combination of lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNF-α) was also tested as a natural activation mean of PMNs. The production of ROS by PMNs was assessed by L-012 chemiluminescence. Total MPO and EL released in supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Furthermore, degranulation of the active fraction of MPO was also measured by specific immunological extraction followed by enzymatic detection (SIEFED). Overall, SEVO enhanced the release of ROS, MPO, and EL following artificial stimulation of PMNs but the volatile anesthetic inhibited the degranulation of active MPO and EL after neutrophil exposure to LPS and TNF-α. This study highlighted that the effect of SEVO on activated PMNs is dependent on the conditions of cell stimulation. These properties should be taken into consideration in future studies investigating immunomodulatory effects of volatile anesthetics. |
---|