Cargando…
An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates
BACKGROUND: This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate sea...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806852/ https://www.ncbi.nlm.nih.gov/pubmed/29425200 http://dx.doi.org/10.1371/journal.pntd.0006188 |
_version_ | 1783299180735758336 |
---|---|
author | Alderton, Simon Macleod, Ewan T. Anderson, Neil E. Palmer, Gwen Machila, Noreen Simuunza, Martin Welburn, Susan C. Atkinson, Peter M. |
author_facet | Alderton, Simon Macleod, Ewan T. Anderson, Neil E. Palmer, Gwen Machila, Noreen Simuunza, Martin Welburn, Susan C. Atkinson, Peter M. |
author_sort | Alderton, Simon |
collection | PubMed |
description | BACKGROUND: This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a greater understanding of disease dynamics. Such an understanding is essential for the development of appropriate, well-targeted mitigation strategies in the future. METHODS: The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale demographic data such as ethnicity, age and gender for the human population in the region, as well as an animal census and a sample of daily routines, we create a detailed, plausible simulation model to explore tsetse population and disease transmission dynamics. RESULTS: The seasonally-driven model suggests that the number of infections reported annually in the simulation is likely to be a reasonable representation of reality, taking into account the high levels of under-detection observed. Similar infection rates were observed in human (0.355 per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025)) populations, likely due to the sparsity of cattle close to the tsetse interface. The model suggests that immigrant tribes and school children are at greatest risk of infection, a result that derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This result could not be inferred using alternative population-level modelling approaches. CONCLUSIONS: In producing a model which models the tsetse population at a very fine resolution, we were able to analyse and evaluate specific elements of the output, such as pupal development and the progression of the teneral population, allowing the development of our understanding of the tsetse population as a whole. This is an important step in the production of a more accurate transmission model for rHAT which can, in turn, help us to gain a greater understanding of the transmission system as a whole. |
format | Online Article Text |
id | pubmed-5806852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58068522018-02-23 An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates Alderton, Simon Macleod, Ewan T. Anderson, Neil E. Palmer, Gwen Machila, Noreen Simuunza, Martin Welburn, Susan C. Atkinson, Peter M. PLoS Negl Trop Dis Research Article BACKGROUND: This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a greater understanding of disease dynamics. Such an understanding is essential for the development of appropriate, well-targeted mitigation strategies in the future. METHODS: The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale demographic data such as ethnicity, age and gender for the human population in the region, as well as an animal census and a sample of daily routines, we create a detailed, plausible simulation model to explore tsetse population and disease transmission dynamics. RESULTS: The seasonally-driven model suggests that the number of infections reported annually in the simulation is likely to be a reasonable representation of reality, taking into account the high levels of under-detection observed. Similar infection rates were observed in human (0.355 per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025)) populations, likely due to the sparsity of cattle close to the tsetse interface. The model suggests that immigrant tribes and school children are at greatest risk of infection, a result that derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This result could not be inferred using alternative population-level modelling approaches. CONCLUSIONS: In producing a model which models the tsetse population at a very fine resolution, we were able to analyse and evaluate specific elements of the output, such as pupal development and the progression of the teneral population, allowing the development of our understanding of the tsetse population as a whole. This is an important step in the production of a more accurate transmission model for rHAT which can, in turn, help us to gain a greater understanding of the transmission system as a whole. Public Library of Science 2018-02-09 /pmc/articles/PMC5806852/ /pubmed/29425200 http://dx.doi.org/10.1371/journal.pntd.0006188 Text en © 2018 Alderton et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Alderton, Simon Macleod, Ewan T. Anderson, Neil E. Palmer, Gwen Machila, Noreen Simuunza, Martin Welburn, Susan C. Atkinson, Peter M. An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates |
title | An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates |
title_full | An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates |
title_fullStr | An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates |
title_full_unstemmed | An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates |
title_short | An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates |
title_sort | agent-based model of tsetse fly response to seasonal climatic drivers: assessing the impact on sleeping sickness transmission rates |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806852/ https://www.ncbi.nlm.nih.gov/pubmed/29425200 http://dx.doi.org/10.1371/journal.pntd.0006188 |
work_keys_str_mv | AT aldertonsimon anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT macleodewant anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT andersonneile anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT palmergwen anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT machilanoreen anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT simuunzamartin anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT welburnsusanc anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT atkinsonpeterm anagentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT aldertonsimon agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT macleodewant agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT andersonneile agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT palmergwen agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT machilanoreen agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT simuunzamartin agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT welburnsusanc agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates AT atkinsonpeterm agentbasedmodeloftsetseflyresponsetoseasonalclimaticdriversassessingtheimpactonsleepingsicknesstransmissionrates |