Cargando…
Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera
General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1–2, PBP-A–D) previously reported to form a complex ar...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806886/ https://www.ncbi.nlm.nih.gov/pubmed/29425254 http://dx.doi.org/10.1371/journal.pone.0192762 |
_version_ | 1783299188703887360 |
---|---|
author | Yasukochi, Yuji Yang, Bin Fujimoto, Toshiaki Sahara, Ken Matsuo, Takashi Ishikawa, Yukio |
author_facet | Yasukochi, Yuji Yang, Bin Fujimoto, Toshiaki Sahara, Ken Matsuo, Takashi Ishikawa, Yukio |
author_sort | Yasukochi, Yuji |
collection | PubMed |
description | General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1–2, PBP-A–D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69–149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia. |
format | Online Article Text |
id | pubmed-5806886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58068862018-02-23 Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera Yasukochi, Yuji Yang, Bin Fujimoto, Toshiaki Sahara, Ken Matsuo, Takashi Ishikawa, Yukio PLoS One Research Article General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1–2, PBP-A–D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69–149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia. Public Library of Science 2018-02-09 /pmc/articles/PMC5806886/ /pubmed/29425254 http://dx.doi.org/10.1371/journal.pone.0192762 Text en © 2018 Yasukochi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yasukochi, Yuji Yang, Bin Fujimoto, Toshiaki Sahara, Ken Matsuo, Takashi Ishikawa, Yukio Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
title | Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
title_full | Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
title_fullStr | Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
title_full_unstemmed | Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
title_short | Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
title_sort | conservation and lineage-specific rearrangements in the gobp/pbp gene complex of distantly related ditrysian lepidoptera |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806886/ https://www.ncbi.nlm.nih.gov/pubmed/29425254 http://dx.doi.org/10.1371/journal.pone.0192762 |
work_keys_str_mv | AT yasukochiyuji conservationandlineagespecificrearrangementsinthegobppbpgenecomplexofdistantlyrelatedditrysianlepidoptera AT yangbin conservationandlineagespecificrearrangementsinthegobppbpgenecomplexofdistantlyrelatedditrysianlepidoptera AT fujimototoshiaki conservationandlineagespecificrearrangementsinthegobppbpgenecomplexofdistantlyrelatedditrysianlepidoptera AT saharaken conservationandlineagespecificrearrangementsinthegobppbpgenecomplexofdistantlyrelatedditrysianlepidoptera AT matsuotakashi conservationandlineagespecificrearrangementsinthegobppbpgenecomplexofdistantlyrelatedditrysianlepidoptera AT ishikawayukio conservationandlineagespecificrearrangementsinthegobppbpgenecomplexofdistantlyrelatedditrysianlepidoptera |