Cargando…

Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the h...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgani, Sophie M, Metzger, Jakob J, Nichols, Jennifer, Siggia, Eric D, Hadjantonakis, Anna-Katerina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807051/
https://www.ncbi.nlm.nih.gov/pubmed/29412136
http://dx.doi.org/10.7554/eLife.32839
_version_ 1783299223057334272
author Morgani, Sophie M
Metzger, Jakob J
Nichols, Jennifer
Siggia, Eric D
Hadjantonakis, Anna-Katerina
author_facet Morgani, Sophie M
Metzger, Jakob J
Nichols, Jennifer
Siggia, Eric D
Hadjantonakis, Anna-Katerina
author_sort Morgani, Sophie M
collection PubMed
description During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.
format Online
Article
Text
id pubmed-5807051
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-58070512018-02-12 Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning Morgani, Sophie M Metzger, Jakob J Nichols, Jennifer Siggia, Eric D Hadjantonakis, Anna-Katerina eLife Stem Cells and Regenerative Medicine During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. eLife Sciences Publications, Ltd 2018-02-07 /pmc/articles/PMC5807051/ /pubmed/29412136 http://dx.doi.org/10.7554/eLife.32839 Text en © 2018, Morgani et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Stem Cells and Regenerative Medicine
Morgani, Sophie M
Metzger, Jakob J
Nichols, Jennifer
Siggia, Eric D
Hadjantonakis, Anna-Katerina
Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
title Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
title_full Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
title_fullStr Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
title_full_unstemmed Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
title_short Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
title_sort micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
topic Stem Cells and Regenerative Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807051/
https://www.ncbi.nlm.nih.gov/pubmed/29412136
http://dx.doi.org/10.7554/eLife.32839
work_keys_str_mv AT morganisophiem micropatterndifferentiationofmousepluripotentstemcellsrecapitulatesembryoregionalizedcellfatepatterning
AT metzgerjakobj micropatterndifferentiationofmousepluripotentstemcellsrecapitulatesembryoregionalizedcellfatepatterning
AT nicholsjennifer micropatterndifferentiationofmousepluripotentstemcellsrecapitulatesembryoregionalizedcellfatepatterning
AT siggiaericd micropatterndifferentiationofmousepluripotentstemcellsrecapitulatesembryoregionalizedcellfatepatterning
AT hadjantonakisannakaterina micropatterndifferentiationofmousepluripotentstemcellsrecapitulatesembryoregionalizedcellfatepatterning