Cargando…

A Mathematical Model for Enzyme Clustering in Glucose Metabolism

We have recently demonstrated that the rate-limiting enzymes in human glucose metabolism organize into cytoplasmic clusters to form a multienzyme complex, the glucosome, in at least three different sizes. Quantitative high-content imaging data support a hypothesis that the glucosome clusters regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Miji, Kang, Hye-Won, An, Songon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807315/
https://www.ncbi.nlm.nih.gov/pubmed/29426820
http://dx.doi.org/10.1038/s41598-018-20348-7
Descripción
Sumario:We have recently demonstrated that the rate-limiting enzymes in human glucose metabolism organize into cytoplasmic clusters to form a multienzyme complex, the glucosome, in at least three different sizes. Quantitative high-content imaging data support a hypothesis that the glucosome clusters regulate the direction of glucose flux between energy metabolism and building block biosynthesis in a cluster size-dependent manner. However, direct measurement of their functional contributions to cellular metabolism at subcellular levels has remained challenging. In this work, we develop a mathematical model using a system of ordinary differential equations, in which the association of the rate-limiting enzymes into multienzyme complexes is included as an essential element. We then demonstrate that our mathematical model provides a quantitative principle to simulate glucose flux at both subcellular and population levels in human cancer cells. Lastly, we use the model to simulate 2-deoxyglucose-mediated alteration of glucose flux in a population level based on subcellular high-content imaging data. Collectively, we introduce a new mathematical model for human glucose metabolism, which promotes our understanding of functional roles of differently sized multienzyme complexes in both single-cell and population levels.