Cargando…

Spectroscopy of bulk and few-layer superconducting NbSe(2) with van der Waals tunnel junctions

Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation a...

Descripción completa

Detalles Bibliográficos
Autores principales: Dvir, T., Massee, F., Attias, L., Khodas, M., Aprili, M., Quay, C. H. L., Steinberg, H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807409/
https://www.ncbi.nlm.nih.gov/pubmed/29426840
http://dx.doi.org/10.1038/s41467-018-03000-w
Descripción
Sumario:Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe(2) devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin–orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.