Cargando…
Site-specific N-glycosylation analysis of soluble Fcγ receptor IIIb in human serum
Fc-receptors for immunoglobulin G (FcγRs) mediate a variety of effector and regulatory mechanisms in the immune system. N-glycosylation of FcγRs critically affects their functions which is well exemplified by antibody-dependent cell-mediated cytotoxicity (ADCC) and phagocytosis mediated by homologou...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807427/ https://www.ncbi.nlm.nih.gov/pubmed/29426894 http://dx.doi.org/10.1038/s41598-018-21145-y |
Sumario: | Fc-receptors for immunoglobulin G (FcγRs) mediate a variety of effector and regulatory mechanisms in the immune system. N-glycosylation of FcγRs critically affects their functions which is well exemplified by antibody-dependent cell-mediated cytotoxicity (ADCC) and phagocytosis mediated by homologous FcγRIIIa and FcγRIIIb, respectively. Although several reports describe N-glycosylation profiles of recombinant FcγRIII glycoproteins, much remains unknown regarding their native glycoforms. Here we performed site-specific N-glycosylation profiling of a soluble form of FcγRIIIb purified from human serum based on mass spectrometric analysis. Our data indicate a distinct and common tendency of the glycoforms exhibited at each N-glycosylation site between the native and the previously reported recombinant FcγRIII glycoproteins. Among the six N-glycosylation sites of serum soluble FcγRIIIb, Asn45 was shown to be exclusively occupied by high-mannose-type oligosaccharides, whereas the remaining sites were solely modified by the complex-type oligosaccharides with sialic acid and fucose residues. The results of our endogenous FcγRIII glycoform analyses are important for the optimization of therapeutic antibody efficacy. |
---|