Cargando…
Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate
Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature...
Autores principales: | Padmanaban, Subash, Baker, Justin, Greger, Bradley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807908/ https://www.ncbi.nlm.nih.gov/pubmed/29467602 http://dx.doi.org/10.3389/fnins.2018.00022 |
Ejemplares similares
-
Corrigendum: Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate
por: Padmanaban, Subash, et al.
Publicado: (2018) -
Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography
por: Paek, Andrew Y., et al.
Publicado: (2014) -
EEG resolutions in detecting and decoding finger movements from spectral analysis
por: Xiao, Ran, et al.
Publicado: (2015) -
Decoding the EEG patterns induced by sequential finger movement for brain-computer interfaces
por: Liu, Chang, et al.
Publicado: (2023) -
Decoding Finger Movements from ECoG Signals Using Switching Linear Models
por: Flamary, Rémi, et al.
Publicado: (2012)