Cargando…

Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2

The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindroos, Robert, Dorst, Matthijs C., Du, Kai, Filipović, Marko, Keller, Daniel, Ketzef, Maya, Kozlov, Alexander K., Kumar, Arvind, Lindahl, Mikael, Nair, Anu G., Pérez-Fernández, Juan, Grillner, Sten, Silberberg, Gilad, Hellgren Kotaleski, Jeanette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808142/
https://www.ncbi.nlm.nih.gov/pubmed/29467627
http://dx.doi.org/10.3389/fncir.2018.00003
_version_ 1783299409925111808
author Lindroos, Robert
Dorst, Matthijs C.
Du, Kai
Filipović, Marko
Keller, Daniel
Ketzef, Maya
Kozlov, Alexander K.
Kumar, Arvind
Lindahl, Mikael
Nair, Anu G.
Pérez-Fernández, Juan
Grillner, Sten
Silberberg, Gilad
Hellgren Kotaleski, Jeanette
author_facet Lindroos, Robert
Dorst, Matthijs C.
Du, Kai
Filipović, Marko
Keller, Daniel
Ketzef, Maya
Kozlov, Alexander K.
Kumar, Arvind
Lindahl, Mikael
Nair, Anu G.
Pérez-Fernández, Juan
Grillner, Sten
Silberberg, Gilad
Hellgren Kotaleski, Jeanette
author_sort Lindroos, Robert
collection PubMed
description The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
format Online
Article
Text
id pubmed-5808142
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-58081422018-02-21 Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 Lindroos, Robert Dorst, Matthijs C. Du, Kai Filipović, Marko Keller, Daniel Ketzef, Maya Kozlov, Alexander K. Kumar, Arvind Lindahl, Mikael Nair, Anu G. Pérez-Fernández, Juan Grillner, Sten Silberberg, Gilad Hellgren Kotaleski, Jeanette Front Neural Circuits Neuroscience The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. Frontiers Media S.A. 2018-02-06 /pmc/articles/PMC5808142/ /pubmed/29467627 http://dx.doi.org/10.3389/fncir.2018.00003 Text en Copyright © 2018 Lindroos, Dorst, Du, Filipović, Keller, Ketzef, Kozlov, Kumar, Lindahl, Nair, Pérez-Fernández, Grillner, Silberberg and Hellgren Kotaleski. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Lindroos, Robert
Dorst, Matthijs C.
Du, Kai
Filipović, Marko
Keller, Daniel
Ketzef, Maya
Kozlov, Alexander K.
Kumar, Arvind
Lindahl, Mikael
Nair, Anu G.
Pérez-Fernández, Juan
Grillner, Sten
Silberberg, Gilad
Hellgren Kotaleski, Jeanette
Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
title Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
title_full Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
title_fullStr Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
title_full_unstemmed Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
title_short Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
title_sort basal ganglia neuromodulation over multiple temporal and structural scales—simulations of direct pathway msns investigate the fast onset of dopaminergic effects and predict the role of kv4.2
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808142/
https://www.ncbi.nlm.nih.gov/pubmed/29467627
http://dx.doi.org/10.3389/fncir.2018.00003
work_keys_str_mv AT lindroosrobert basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT dorstmatthijsc basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT dukai basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT filipovicmarko basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT kellerdaniel basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT ketzefmaya basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT kozlovalexanderk basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT kumararvind basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT lindahlmikael basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT nairanug basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT perezfernandezjuan basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT grillnersten basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT silberberggilad basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42
AT hellgrenkotaleskijeanette basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42