Cargando…
Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808142/ https://www.ncbi.nlm.nih.gov/pubmed/29467627 http://dx.doi.org/10.3389/fncir.2018.00003 |
_version_ | 1783299409925111808 |
---|---|
author | Lindroos, Robert Dorst, Matthijs C. Du, Kai Filipović, Marko Keller, Daniel Ketzef, Maya Kozlov, Alexander K. Kumar, Arvind Lindahl, Mikael Nair, Anu G. Pérez-Fernández, Juan Grillner, Sten Silberberg, Gilad Hellgren Kotaleski, Jeanette |
author_facet | Lindroos, Robert Dorst, Matthijs C. Du, Kai Filipović, Marko Keller, Daniel Ketzef, Maya Kozlov, Alexander K. Kumar, Arvind Lindahl, Mikael Nair, Anu G. Pérez-Fernández, Juan Grillner, Sten Silberberg, Gilad Hellgren Kotaleski, Jeanette |
author_sort | Lindroos, Robert |
collection | PubMed |
description | The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. |
format | Online Article Text |
id | pubmed-5808142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58081422018-02-21 Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 Lindroos, Robert Dorst, Matthijs C. Du, Kai Filipović, Marko Keller, Daniel Ketzef, Maya Kozlov, Alexander K. Kumar, Arvind Lindahl, Mikael Nair, Anu G. Pérez-Fernández, Juan Grillner, Sten Silberberg, Gilad Hellgren Kotaleski, Jeanette Front Neural Circuits Neuroscience The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models. Frontiers Media S.A. 2018-02-06 /pmc/articles/PMC5808142/ /pubmed/29467627 http://dx.doi.org/10.3389/fncir.2018.00003 Text en Copyright © 2018 Lindroos, Dorst, Du, Filipović, Keller, Ketzef, Kozlov, Kumar, Lindahl, Nair, Pérez-Fernández, Grillner, Silberberg and Hellgren Kotaleski. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Lindroos, Robert Dorst, Matthijs C. Du, Kai Filipović, Marko Keller, Daniel Ketzef, Maya Kozlov, Alexander K. Kumar, Arvind Lindahl, Mikael Nair, Anu G. Pérez-Fernández, Juan Grillner, Sten Silberberg, Gilad Hellgren Kotaleski, Jeanette Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 |
title | Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 |
title_full | Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 |
title_fullStr | Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 |
title_full_unstemmed | Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 |
title_short | Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2 |
title_sort | basal ganglia neuromodulation over multiple temporal and structural scales—simulations of direct pathway msns investigate the fast onset of dopaminergic effects and predict the role of kv4.2 |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808142/ https://www.ncbi.nlm.nih.gov/pubmed/29467627 http://dx.doi.org/10.3389/fncir.2018.00003 |
work_keys_str_mv | AT lindroosrobert basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT dorstmatthijsc basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT dukai basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT filipovicmarko basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT kellerdaniel basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT ketzefmaya basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT kozlovalexanderk basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT kumararvind basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT lindahlmikael basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT nairanug basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT perezfernandezjuan basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT grillnersten basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT silberberggilad basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 AT hellgrenkotaleskijeanette basalganglianeuromodulationovermultipletemporalandstructuralscalessimulationsofdirectpathwaymsnsinvestigatethefastonsetofdopaminergiceffectsandpredicttheroleofkv42 |