Cargando…

Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers

Recent introduction of all-oral direct-acting antiviral (DAA) treatment has revolutionized care of patients with chronic hepatitis C virus (HCV) infection. Regrettably, the high cost of DAA treatment is burdensome for healthcare systems and may be prohibitive for some patients who would otherwise be...

Descripción completa

Detalles Bibliográficos
Autores principales: Hutchinson, James A., Weigand, Kilian, Adenugba, Akinbami, Kronenberg, Katharina, Haarer, Jan, Zeman, Florian, Riquelme, Paloma, Hornung, Matthias, Ahrens, Norbert, Schlitt, Hans J., Geissler, Edward K., Werner, Jens M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808305/
https://www.ncbi.nlm.nih.gov/pubmed/29467758
http://dx.doi.org/10.3389/fimmu.2018.00146
_version_ 1783299446214230016
author Hutchinson, James A.
Weigand, Kilian
Adenugba, Akinbami
Kronenberg, Katharina
Haarer, Jan
Zeman, Florian
Riquelme, Paloma
Hornung, Matthias
Ahrens, Norbert
Schlitt, Hans J.
Geissler, Edward K.
Werner, Jens M.
author_facet Hutchinson, James A.
Weigand, Kilian
Adenugba, Akinbami
Kronenberg, Katharina
Haarer, Jan
Zeman, Florian
Riquelme, Paloma
Hornung, Matthias
Ahrens, Norbert
Schlitt, Hans J.
Geissler, Edward K.
Werner, Jens M.
author_sort Hutchinson, James A.
collection PubMed
description Recent introduction of all-oral direct-acting antiviral (DAA) treatment has revolutionized care of patients with chronic hepatitis C virus (HCV) infection. Regrettably, the high cost of DAA treatment is burdensome for healthcare systems and may be prohibitive for some patients who would otherwise benefit. Understanding how patient-related factors influence individual responses to DAA treatment may lead to more efficient prescribing. In this observational study, patients with chronic HCV infection were comprehensively monitored by flow cytometry to identify pretreatment immunological variables that predicted HCV RNA negativity within 4 weeks of commencing DAA treatment. Twenty-three patients [genotype 1a (n = 10), 1b (n = 9), and 3 (n = 4)] were treated with daclatasvir plus sofosbuvir (SOF) (n = 15), ledipasvir plus SOF (n = 4), or ritonavir-boosted paritaprevir, ombitasvir, and dasabuvir (n = 4). DAA treatment most prominently altered the distribution of CD8(+) memory T cell subsets. Knowing only pretreatment frequencies of CD3(+) and naive CD8(+) T cells allowed correct classification of 83% of patients as “fast” (HCV RNA-negative by 4 weeks) or “slow” responders. In a prospective cohort, these parameters correctly classified 90% of patients. Slow responders exhibited higher frequencies of CD3(+) T cells, CD8(+) T(EM) cells, and CD5(high) CD27(−) CD57(+) CD8(+) chronically activated T cells, which is attributed to bystander hyperactivation of virus-non-specific CD8(+) T cells. Taken together, non-specific, systemic CD8(+) T cell activation predicted a longer time to viral clearance. This discovery allows pretreatment identification of individuals who may not require a full 12-week course of DAA therapy; in turn, this could lead to individualized prescribing and more efficient resource allocation.
format Online
Article
Text
id pubmed-5808305
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-58083052018-02-21 Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers Hutchinson, James A. Weigand, Kilian Adenugba, Akinbami Kronenberg, Katharina Haarer, Jan Zeman, Florian Riquelme, Paloma Hornung, Matthias Ahrens, Norbert Schlitt, Hans J. Geissler, Edward K. Werner, Jens M. Front Immunol Immunology Recent introduction of all-oral direct-acting antiviral (DAA) treatment has revolutionized care of patients with chronic hepatitis C virus (HCV) infection. Regrettably, the high cost of DAA treatment is burdensome for healthcare systems and may be prohibitive for some patients who would otherwise benefit. Understanding how patient-related factors influence individual responses to DAA treatment may lead to more efficient prescribing. In this observational study, patients with chronic HCV infection were comprehensively monitored by flow cytometry to identify pretreatment immunological variables that predicted HCV RNA negativity within 4 weeks of commencing DAA treatment. Twenty-three patients [genotype 1a (n = 10), 1b (n = 9), and 3 (n = 4)] were treated with daclatasvir plus sofosbuvir (SOF) (n = 15), ledipasvir plus SOF (n = 4), or ritonavir-boosted paritaprevir, ombitasvir, and dasabuvir (n = 4). DAA treatment most prominently altered the distribution of CD8(+) memory T cell subsets. Knowing only pretreatment frequencies of CD3(+) and naive CD8(+) T cells allowed correct classification of 83% of patients as “fast” (HCV RNA-negative by 4 weeks) or “slow” responders. In a prospective cohort, these parameters correctly classified 90% of patients. Slow responders exhibited higher frequencies of CD3(+) T cells, CD8(+) T(EM) cells, and CD5(high) CD27(−) CD57(+) CD8(+) chronically activated T cells, which is attributed to bystander hyperactivation of virus-non-specific CD8(+) T cells. Taken together, non-specific, systemic CD8(+) T cell activation predicted a longer time to viral clearance. This discovery allows pretreatment identification of individuals who may not require a full 12-week course of DAA therapy; in turn, this could lead to individualized prescribing and more efficient resource allocation. Frontiers Media S.A. 2018-02-07 /pmc/articles/PMC5808305/ /pubmed/29467758 http://dx.doi.org/10.3389/fimmu.2018.00146 Text en Copyright © 2018 Hutchinson, Weigand, Adenugba, Kronenberg, Haarer, Zeman, Riquelme, Hornung, Ahrens, Schlitt, Geissler and Werner. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Hutchinson, James A.
Weigand, Kilian
Adenugba, Akinbami
Kronenberg, Katharina
Haarer, Jan
Zeman, Florian
Riquelme, Paloma
Hornung, Matthias
Ahrens, Norbert
Schlitt, Hans J.
Geissler, Edward K.
Werner, Jens M.
Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers
title Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers
title_full Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers
title_fullStr Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers
title_full_unstemmed Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers
title_short Predicting Early Viral Control under Direct-Acting Antiviral Therapy for Chronic Hepatitis C Virus Using Pretreatment Immunological Markers
title_sort predicting early viral control under direct-acting antiviral therapy for chronic hepatitis c virus using pretreatment immunological markers
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808305/
https://www.ncbi.nlm.nih.gov/pubmed/29467758
http://dx.doi.org/10.3389/fimmu.2018.00146
work_keys_str_mv AT hutchinsonjamesa predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT weigandkilian predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT adenugbaakinbami predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT kronenbergkatharina predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT haarerjan predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT zemanflorian predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT riquelmepaloma predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT hornungmatthias predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT ahrensnorbert predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT schlitthansj predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT geissleredwardk predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers
AT wernerjensm predictingearlyviralcontrolunderdirectactingantiviraltherapyforchronichepatitiscvirususingpretreatmentimmunologicalmarkers