Cargando…
Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
[Image: see text] In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808359/ https://www.ncbi.nlm.nih.gov/pubmed/29449906 http://dx.doi.org/10.1021/acs.jpcc.7b11031 |
_version_ | 1783299458855862272 |
---|---|
author | Hoffman, Alexander E. J. Vanduyfhuys, Louis Nevjestić, Irena Wieme, Jelle Rogge, Sven M. J. Depauw, Hannes Van Der Voort, Pascal Vrielinck, Henk Van Speybroeck, Veronique |
author_facet | Hoffman, Alexander E. J. Vanduyfhuys, Louis Nevjestić, Irena Wieme, Jelle Rogge, Sven M. J. Depauw, Hannes Van Der Voort, Pascal Vrielinck, Henk Van Speybroeck, Veronique |
author_sort | Hoffman, Alexander E. J. |
collection | PubMed |
description | [Image: see text] In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition. |
format | Online Article Text |
id | pubmed-5808359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-58083592018-02-13 Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach Hoffman, Alexander E. J. Vanduyfhuys, Louis Nevjestić, Irena Wieme, Jelle Rogge, Sven M. J. Depauw, Hannes Van Der Voort, Pascal Vrielinck, Henk Van Speybroeck, Veronique J Phys Chem C Nanomater Interfaces [Image: see text] In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition. American Chemical Society 2018-01-08 2018-02-08 /pmc/articles/PMC5808359/ /pubmed/29449906 http://dx.doi.org/10.1021/acs.jpcc.7b11031 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Hoffman, Alexander E. J. Vanduyfhuys, Louis Nevjestić, Irena Wieme, Jelle Rogge, Sven M. J. Depauw, Hannes Van Der Voort, Pascal Vrielinck, Henk Van Speybroeck, Veronique Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach |
title | Elucidating the Vibrational Fingerprint of the Flexible
Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational
Approach |
title_full | Elucidating the Vibrational Fingerprint of the Flexible
Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational
Approach |
title_fullStr | Elucidating the Vibrational Fingerprint of the Flexible
Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational
Approach |
title_full_unstemmed | Elucidating the Vibrational Fingerprint of the Flexible
Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational
Approach |
title_short | Elucidating the Vibrational Fingerprint of the Flexible
Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational
Approach |
title_sort | elucidating the vibrational fingerprint of the flexible
metal–organic framework mil-53(al) using a combined experimental/computational
approach |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808359/ https://www.ncbi.nlm.nih.gov/pubmed/29449906 http://dx.doi.org/10.1021/acs.jpcc.7b11031 |
work_keys_str_mv | AT hoffmanalexanderej elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT vanduyfhuyslouis elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT nevjesticirena elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT wiemejelle elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT roggesvenmj elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT depauwhannes elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT vandervoortpascal elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT vrielinckhenk elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach AT vanspeybroeckveronique elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach |