Cargando…

Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach

[Image: see text] In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoffman, Alexander E. J., Vanduyfhuys, Louis, Nevjestić, Irena, Wieme, Jelle, Rogge, Sven M. J., Depauw, Hannes, Van Der Voort, Pascal, Vrielinck, Henk, Van Speybroeck, Veronique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808359/
https://www.ncbi.nlm.nih.gov/pubmed/29449906
http://dx.doi.org/10.1021/acs.jpcc.7b11031
_version_ 1783299458855862272
author Hoffman, Alexander E. J.
Vanduyfhuys, Louis
Nevjestić, Irena
Wieme, Jelle
Rogge, Sven M. J.
Depauw, Hannes
Van Der Voort, Pascal
Vrielinck, Henk
Van Speybroeck, Veronique
author_facet Hoffman, Alexander E. J.
Vanduyfhuys, Louis
Nevjestić, Irena
Wieme, Jelle
Rogge, Sven M. J.
Depauw, Hannes
Van Der Voort, Pascal
Vrielinck, Henk
Van Speybroeck, Veronique
author_sort Hoffman, Alexander E. J.
collection PubMed
description [Image: see text] In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.
format Online
Article
Text
id pubmed-5808359
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-58083592018-02-13 Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach Hoffman, Alexander E. J. Vanduyfhuys, Louis Nevjestić, Irena Wieme, Jelle Rogge, Sven M. J. Depauw, Hannes Van Der Voort, Pascal Vrielinck, Henk Van Speybroeck, Veronique J Phys Chem C Nanomater Interfaces [Image: see text] In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition. American Chemical Society 2018-01-08 2018-02-08 /pmc/articles/PMC5808359/ /pubmed/29449906 http://dx.doi.org/10.1021/acs.jpcc.7b11031 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Hoffman, Alexander E. J.
Vanduyfhuys, Louis
Nevjestić, Irena
Wieme, Jelle
Rogge, Sven M. J.
Depauw, Hannes
Van Der Voort, Pascal
Vrielinck, Henk
Van Speybroeck, Veronique
Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
title Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
title_full Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
title_fullStr Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
title_full_unstemmed Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
title_short Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach
title_sort elucidating the vibrational fingerprint of the flexible metal–organic framework mil-53(al) using a combined experimental/computational approach
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808359/
https://www.ncbi.nlm.nih.gov/pubmed/29449906
http://dx.doi.org/10.1021/acs.jpcc.7b11031
work_keys_str_mv AT hoffmanalexanderej elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT vanduyfhuyslouis elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT nevjesticirena elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT wiemejelle elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT roggesvenmj elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT depauwhannes elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT vandervoortpascal elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT vrielinckhenk elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach
AT vanspeybroeckveronique elucidatingthevibrationalfingerprintoftheflexiblemetalorganicframeworkmil53alusingacombinedexperimentalcomputationalapproach