Cargando…
Granger Causality Analysis of Interictal iEEG Predicts Seizure Focus and Ultimate Resection
BACKGROUND: A critical conceptual step in epilepsy surgery is to locate the causal region of seizures. In practice, the causal region may be inferred from the set of electrodes showing early ictal activity. There would be advantages in deriving information about causal regions from interictal data a...
Autores principales: | Park, Eun-Hyoung, Madsen, Joseph R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808502/ https://www.ncbi.nlm.nih.gov/pubmed/28472428 http://dx.doi.org/10.1093/neuros/nyx195 |
Ejemplares similares
-
Extensions of Granger Causality Calculations on Brain Networks for Efficient and Accurate Seizure Focus Identification via iEEGs
por: Yang, Victor B., et al.
Publicado: (2021) -
A Primer on Hyperdimensional Computing for iEEG Seizure Detection
por: Schindler, Kaspar A., et al.
Publicado: (2021) -
Online Prediction of Lead Seizures from iEEG Data
por: Chen, Hsiang-Han, et al.
Publicado: (2021) -
Statistical Features in High-Frequency Bands of Interictal iEEG Work Efficiently in Identifying the Seizure Onset Zone in Patients with Focal Epilepsy
por: Akter, Most. Sheuli, et al.
Publicado: (2020) -
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023)