Cargando…
Super-Resolution Community Detection for Layer-Aggregated Multilayer Networks
Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of thi...
Autores principales: | Taylor, Dane, Caceres, Rajmonda S., Mucha, Peter J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809009/ https://www.ncbi.nlm.nih.gov/pubmed/29445565 http://dx.doi.org/10.1103/PhysRevX.7.031056 |
Ejemplares similares
-
Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
por: Wu, Xianyu, et al.
Publicado: (2023) -
Adaptive Aggregate Stereo Matching Network with Depth Map Super-Resolution
por: Liu, Botao, et al.
Publicado: (2022) -
Community detection with node attributes in multilayer networks
por: Contisciani, Martina, et al.
Publicado: (2020) -
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
por: Zenke, Friedemann, et al.
Publicado: (2018) -
Multilayer pixel super-resolution lensless in-line holographic microscope with random sample movement
por: Wang, Mingjun, et al.
Publicado: (2017)