Cargando…
Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data
The quality of life for people in urban regions can be improved by predicting urban human mobility and adjusting urban planning accordingly. In this study, we compared several possible variables to verify whether a gravity model (a human mobility prediction model borrowed from Newtonian mechanics) w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809051/ https://www.ncbi.nlm.nih.gov/pubmed/29432440 http://dx.doi.org/10.1371/journal.pone.0192698 |
_version_ | 1783299523070656512 |
---|---|
author | Kim, Jungmin Park, Juyong Lee, Wonjae |
author_facet | Kim, Jungmin Park, Juyong Lee, Wonjae |
author_sort | Kim, Jungmin |
collection | PubMed |
description | The quality of life for people in urban regions can be improved by predicting urban human mobility and adjusting urban planning accordingly. In this study, we compared several possible variables to verify whether a gravity model (a human mobility prediction model borrowed from Newtonian mechanics) worked as well in inner-city regions as it did in intra-city regions. We reviewed the resident population, the number of employees, and the number of SNS posts as variables for generating mass values for an urban traffic gravity model. We also compared the straight-line distance, travel distance, and the impact of time as possible distance values. We defined the functions of urban regions on the basis of public records and SNS data to reflect the diverse social factors in urban regions. In this process, we conducted a dimension reduction method for the public record data and used a machine learning-based clustering algorithm for the SNS data. In doing so, we found that functional distance could be defined as the Euclidean distance between social function vectors in urban regions. Finally, we examined whether the functional distance was a variable that had a significant impact on urban human mobility. |
format | Online Article Text |
id | pubmed-5809051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58090512018-02-28 Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data Kim, Jungmin Park, Juyong Lee, Wonjae PLoS One Research Article The quality of life for people in urban regions can be improved by predicting urban human mobility and adjusting urban planning accordingly. In this study, we compared several possible variables to verify whether a gravity model (a human mobility prediction model borrowed from Newtonian mechanics) worked as well in inner-city regions as it did in intra-city regions. We reviewed the resident population, the number of employees, and the number of SNS posts as variables for generating mass values for an urban traffic gravity model. We also compared the straight-line distance, travel distance, and the impact of time as possible distance values. We defined the functions of urban regions on the basis of public records and SNS data to reflect the diverse social factors in urban regions. In this process, we conducted a dimension reduction method for the public record data and used a machine learning-based clustering algorithm for the SNS data. In doing so, we found that functional distance could be defined as the Euclidean distance between social function vectors in urban regions. Finally, we examined whether the functional distance was a variable that had a significant impact on urban human mobility. Public Library of Science 2018-02-12 /pmc/articles/PMC5809051/ /pubmed/29432440 http://dx.doi.org/10.1371/journal.pone.0192698 Text en © 2018 Kim et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kim, Jungmin Park, Juyong Lee, Wonjae Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data |
title | Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data |
title_full | Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data |
title_fullStr | Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data |
title_full_unstemmed | Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data |
title_short | Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data |
title_sort | why do people move? enhancing human mobility prediction using local functions based on public records and sns data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809051/ https://www.ncbi.nlm.nih.gov/pubmed/29432440 http://dx.doi.org/10.1371/journal.pone.0192698 |
work_keys_str_mv | AT kimjungmin whydopeoplemoveenhancinghumanmobilitypredictionusinglocalfunctionsbasedonpublicrecordsandsnsdata AT parkjuyong whydopeoplemoveenhancinghumanmobilitypredictionusinglocalfunctionsbasedonpublicrecordsandsnsdata AT leewonjae whydopeoplemoveenhancinghumanmobilitypredictionusinglocalfunctionsbasedonpublicrecordsandsnsdata |