Cargando…

Isolation and Expansion of Multipotent Progenitors from Human Trabecular Meshwork

To expand multi-potent progenitors from human trabecular meshwork (TM), we have created a new optimized method on two-dimensional (2D) followed by three–dimensional (3D) Matrigel in modified embryonic stem cell medium supplemented with 5% fetal bovine serum (MESCM + 5% FBS). The expanded TM cells we...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuan, Cai, Subo, Tseng, Scheffer C. G., Zhu, Ying-Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809375/
https://www.ncbi.nlm.nih.gov/pubmed/29434243
http://dx.doi.org/10.1038/s41598-018-21098-2
Descripción
Sumario:To expand multi-potent progenitors from human trabecular meshwork (TM), we have created a new optimized method on two-dimensional (2D) followed by three–dimensional (3D) Matrigel in modified embryonic stem cell medium supplemented with 5% fetal bovine serum (MESCM + 5% FBS). The expanded TM cells were small cuboidal cells expressing TM markers such as AQP1, MGP, CHI3L1, and AnkG, embryonic stem cell (ESC) markers such as Oct4, Sox2, Nanog, and ABCG2, and neural crest (NC) markers such as p75NTR, FOXD3, Sox9, Sox10, and MSX1. Although expanded cells lost expression of these markers after passage, the cells regained the markers when Passage 2 cells were seeded on 3D Matrigel through activation of canonical BMP signaling. Such restored progenitors could differentiate into corneal endothelial cells, adipocytes, and chondrocytes but not keratocytes or osteocytes. Therefore, we have concluded that human TM harbors multipotent progenitors that can be effectively isolated and expanded using 2D Matrigel in MESCM + 5% FBS. This unique in vitro model system can be used to understand how TM is altered in glaucoma and whether such TM progenitor cells might one day be used for treating glaucoma or corneal endothelial dysfunction.