Cargando…
Metabolic and Genetic Properties of Petriella setifera Precultured on Waste
Although fungi that belong to Petriella genus are considered to be favorable agents in the process of microbial decomposition or as plant endophytes, they may simultaneously become plant pests. Hence, nutrition factors are supposed to play an important role. Therefore, it was hypothesized that Petri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809421/ https://www.ncbi.nlm.nih.gov/pubmed/29472904 http://dx.doi.org/10.3389/fmicb.2018.00115 |
_version_ | 1783299554511159296 |
---|---|
author | Oszust, Karolina Panek, Jacek Pertile, Giorgia Siczek, Anna Oleszek, Marta Frąc, Magdalena |
author_facet | Oszust, Karolina Panek, Jacek Pertile, Giorgia Siczek, Anna Oleszek, Marta Frąc, Magdalena |
author_sort | Oszust, Karolina |
collection | PubMed |
description | Although fungi that belong to Petriella genus are considered to be favorable agents in the process of microbial decomposition or as plant endophytes, they may simultaneously become plant pests. Hence, nutrition factors are supposed to play an important role. Therefore, it was hypothesized that Petriella setifera compost isolates, precultured on three different waste-based media containing oak sawdust, beet pulp (BP) and wheat bran (WB) will subsequently reveal different metabolic properties and shifts in genetic fingerprinting. In fact, the aim was to measure the influence of selected waste on the properties of P. setifera. The metabolic potential was evaluated by the ability of five P. setifera strains to decompose oak sawdust, BP and WB following the MT2 plate(®) method and the catabolic abilities of the fungus to utilize the carbon compounds located on filamentous fungi (FF) plates(®). Genetic diversity was evaluated using Amplified Fragment Length Polymorphism analysis performed both on DNA sequences and on transcript-derived fragments. P. setifera isolates were found to be more suitable for decomposing waste materials rich in protein, N, P, K and easily accessible sugars (as found in WB and BP), than those rich in lignocellulose (oak sawdust). Surprisingly, among the different waste media, lignocellulose-rich sawdust-based culture chiefly triggered changes in the metabolic and genetic features of P. setifera. Most particularly, it contributed to improvements in the ability of the fungus to utilize waste-substrates in MT2 plate(®) and two times increase the ability to catabolize carbon compounds located in FF plates(®). Expressive metabolic properties resulting from being grown in sawdust-based substrate were in accordance with differing genotype profiles but not transcriptome. Intraspecific differences among P. setifera isolates are described. |
format | Online Article Text |
id | pubmed-5809421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58094212018-02-22 Metabolic and Genetic Properties of Petriella setifera Precultured on Waste Oszust, Karolina Panek, Jacek Pertile, Giorgia Siczek, Anna Oleszek, Marta Frąc, Magdalena Front Microbiol Microbiology Although fungi that belong to Petriella genus are considered to be favorable agents in the process of microbial decomposition or as plant endophytes, they may simultaneously become plant pests. Hence, nutrition factors are supposed to play an important role. Therefore, it was hypothesized that Petriella setifera compost isolates, precultured on three different waste-based media containing oak sawdust, beet pulp (BP) and wheat bran (WB) will subsequently reveal different metabolic properties and shifts in genetic fingerprinting. In fact, the aim was to measure the influence of selected waste on the properties of P. setifera. The metabolic potential was evaluated by the ability of five P. setifera strains to decompose oak sawdust, BP and WB following the MT2 plate(®) method and the catabolic abilities of the fungus to utilize the carbon compounds located on filamentous fungi (FF) plates(®). Genetic diversity was evaluated using Amplified Fragment Length Polymorphism analysis performed both on DNA sequences and on transcript-derived fragments. P. setifera isolates were found to be more suitable for decomposing waste materials rich in protein, N, P, K and easily accessible sugars (as found in WB and BP), than those rich in lignocellulose (oak sawdust). Surprisingly, among the different waste media, lignocellulose-rich sawdust-based culture chiefly triggered changes in the metabolic and genetic features of P. setifera. Most particularly, it contributed to improvements in the ability of the fungus to utilize waste-substrates in MT2 plate(®) and two times increase the ability to catabolize carbon compounds located in FF plates(®). Expressive metabolic properties resulting from being grown in sawdust-based substrate were in accordance with differing genotype profiles but not transcriptome. Intraspecific differences among P. setifera isolates are described. Frontiers Media S.A. 2018-02-08 /pmc/articles/PMC5809421/ /pubmed/29472904 http://dx.doi.org/10.3389/fmicb.2018.00115 Text en Copyright © 2018 Oszust, Panek, Pertile, Siczek, Oleszek and Frąc. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Oszust, Karolina Panek, Jacek Pertile, Giorgia Siczek, Anna Oleszek, Marta Frąc, Magdalena Metabolic and Genetic Properties of Petriella setifera Precultured on Waste |
title | Metabolic and Genetic Properties of Petriella setifera Precultured on Waste |
title_full | Metabolic and Genetic Properties of Petriella setifera Precultured on Waste |
title_fullStr | Metabolic and Genetic Properties of Petriella setifera Precultured on Waste |
title_full_unstemmed | Metabolic and Genetic Properties of Petriella setifera Precultured on Waste |
title_short | Metabolic and Genetic Properties of Petriella setifera Precultured on Waste |
title_sort | metabolic and genetic properties of petriella setifera precultured on waste |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809421/ https://www.ncbi.nlm.nih.gov/pubmed/29472904 http://dx.doi.org/10.3389/fmicb.2018.00115 |
work_keys_str_mv | AT oszustkarolina metabolicandgeneticpropertiesofpetriellasetiferapreculturedonwaste AT panekjacek metabolicandgeneticpropertiesofpetriellasetiferapreculturedonwaste AT pertilegiorgia metabolicandgeneticpropertiesofpetriellasetiferapreculturedonwaste AT siczekanna metabolicandgeneticpropertiesofpetriellasetiferapreculturedonwaste AT oleszekmarta metabolicandgeneticpropertiesofpetriellasetiferapreculturedonwaste AT fracmagdalena metabolicandgeneticpropertiesofpetriellasetiferapreculturedonwaste |