Cargando…

Generation of a Dual-Target, Safe, Inexpensive Microbicide that Protects Against HIV-1 and HSV-2 Disease

HSV-2 infection is a significant health problem and a major co-morbidity factor for HIV-1 acquisition, increasing risk of infection 2–4 fold. Condom based prevention strategies for HSV-2 and HIV-1 have not been effective at stopping the HIV-1 pandemic, indicating that alternative prevention strategi...

Descripción completa

Detalles Bibliográficos
Autores principales: Farr Zuend, Christina, Nomellini, John F., Smit, John, Horwitz, Marc S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809452/
https://www.ncbi.nlm.nih.gov/pubmed/29434285
http://dx.doi.org/10.1038/s41598-018-21134-1
Descripción
Sumario:HSV-2 infection is a significant health problem and a major co-morbidity factor for HIV-1 acquisition, increasing risk of infection 2–4 fold. Condom based prevention strategies for HSV-2 and HIV-1 have not been effective at stopping the HIV-1 pandemic, indicating that alternative prevention strategies need to be investigated. We have previously developed an inexpensive HIV-1 specific microbicide that utilizes the S-layer mediated display capabilities of Caulobacter crescentus, and have shown that recombinant C. crescentus displaying HIV entry blocking proteins are able to provide significant protection from HIV-1 infection in vitro. Here we demonstrate that recombinant C. crescentus are safe for topical application and describe 5 new recombinant C. crescentus that provide protection from HIV-1 infection in vitro. Further, we demonstrate protection from disease following intravaginal infection with HSV-2 in a murine model using C. crescentus expressing the anti-viral lectins Cyanovirin-N and Griffithsin, as well as α-1-antitrypsin and indolicidin. Interestingly, C. crescentus alone significantly reduced HSV-2 replication in vaginal lavage fluid. Protection from HSV-2 disease was strongly associated with early cytokine production in the vaginal tract. Our data support the potential for a dual-target microbicide that can protect against both HIV-1 and HSV-2, which could have an enormous impact on public health.