Cargando…

A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury

Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducte...

Descripción completa

Detalles Bibliográficos
Autores principales: Koch, Marta, Nicolas, Maya, Zschaetzsch, Marlen, de Geest, Natalie, Claeys, Annelies, Yan, Jiekun, Morgan, Matthew J., Erfurth, Maria-Luise, Holt, Matthew, Schmucker, Dietmar, Hassan, Bassem A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809495/
https://www.ncbi.nlm.nih.gov/pubmed/29472843
http://dx.doi.org/10.3389/fncel.2017.00416
Descripción
Sumario:Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3′-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.