Cargando…
Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River
The Yellow River is the most important water resource in northern China. In the recent past, heavy metal contamination has become severe due to industrial processes and other anthropogenic activities. In this study, riparian soil samples with varying levels of chromium (Cr) pollution severity were c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810299/ https://www.ncbi.nlm.nih.gov/pubmed/29472897 http://dx.doi.org/10.3389/fmicb.2018.00038 |
_version_ | 1783299730599575552 |
---|---|
author | Pei, Yaxin Yu, Zhengsheng Ji, Jing Khan, Aman Li, Xiangkai |
author_facet | Pei, Yaxin Yu, Zhengsheng Ji, Jing Khan, Aman Li, Xiangkai |
author_sort | Pei, Yaxin |
collection | PubMed |
description | The Yellow River is the most important water resource in northern China. In the recent past, heavy metal contamination has become severe due to industrial processes and other anthropogenic activities. In this study, riparian soil samples with varying levels of chromium (Cr) pollution severity were collected along the Gansu industrial reach of the Yellow River, including samples from uncontaminated sites (XC, XGU), slightly contaminated sites (LJX, XGD), and heavily contaminated sites (CG, XG). The Cr concentrations of these samples varied from 83.83 mg⋅kg(-1) (XGU) to 506.58 mg⋅kg(-1) (XG). The chromate [Cr (VI)] reducing ability in the soils collected in this study followed the sequence of the heavily contaminated > slightly contaminated > the un-contaminated. Common Cr remediation genes chrA and yieF were detected in the XG and CG samples. qRT-PCR results showed that the expression of chrA was up-regulated four and threefold in XG and CG samples, respectively, whereas the expression of yieF was up-regulated 66- and 7-fold in the same samples after 30 min treatment with Cr (VI). The copy numbers of chrA and yieF didn’t change after 35 days incubation with Cr (VI). The microbial communities in the Cr contaminated sampling sites were different from those in the uncontaminated samples. Especially, the relative abundances of Firmicutes and Bacteroidetes were higher while Actinobacteria was lower in the contaminated group than uncontaminated group. Further, potential indicator species, related to Cr such as Cr-remediation genera (Geobacter, PSB-M-3, Flavobacterium, and Methanosarcina); the Cr-sensitive genera (Skermanella, Iamia, Arthrobacter, and Candidatus Nitrososphaera) were also identified. These data revealed that Cr shifted microbial composition and function. Further, Cr (VI) reducing ability could be related with the expression of Cr remediation genes. |
format | Online Article Text |
id | pubmed-5810299 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58102992018-02-22 Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River Pei, Yaxin Yu, Zhengsheng Ji, Jing Khan, Aman Li, Xiangkai Front Microbiol Microbiology The Yellow River is the most important water resource in northern China. In the recent past, heavy metal contamination has become severe due to industrial processes and other anthropogenic activities. In this study, riparian soil samples with varying levels of chromium (Cr) pollution severity were collected along the Gansu industrial reach of the Yellow River, including samples from uncontaminated sites (XC, XGU), slightly contaminated sites (LJX, XGD), and heavily contaminated sites (CG, XG). The Cr concentrations of these samples varied from 83.83 mg⋅kg(-1) (XGU) to 506.58 mg⋅kg(-1) (XG). The chromate [Cr (VI)] reducing ability in the soils collected in this study followed the sequence of the heavily contaminated > slightly contaminated > the un-contaminated. Common Cr remediation genes chrA and yieF were detected in the XG and CG samples. qRT-PCR results showed that the expression of chrA was up-regulated four and threefold in XG and CG samples, respectively, whereas the expression of yieF was up-regulated 66- and 7-fold in the same samples after 30 min treatment with Cr (VI). The copy numbers of chrA and yieF didn’t change after 35 days incubation with Cr (VI). The microbial communities in the Cr contaminated sampling sites were different from those in the uncontaminated samples. Especially, the relative abundances of Firmicutes and Bacteroidetes were higher while Actinobacteria was lower in the contaminated group than uncontaminated group. Further, potential indicator species, related to Cr such as Cr-remediation genera (Geobacter, PSB-M-3, Flavobacterium, and Methanosarcina); the Cr-sensitive genera (Skermanella, Iamia, Arthrobacter, and Candidatus Nitrososphaera) were also identified. These data revealed that Cr shifted microbial composition and function. Further, Cr (VI) reducing ability could be related with the expression of Cr remediation genes. Frontiers Media S.A. 2018-01-25 /pmc/articles/PMC5810299/ /pubmed/29472897 http://dx.doi.org/10.3389/fmicb.2018.00038 Text en Copyright © 2018 Pei, Yu, Ji, Khan and Li. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Pei, Yaxin Yu, Zhengsheng Ji, Jing Khan, Aman Li, Xiangkai Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River |
title | Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River |
title_full | Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River |
title_fullStr | Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River |
title_full_unstemmed | Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River |
title_short | Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River |
title_sort | microbial community structure and function indicate the severity of chromium contamination of the yellow river |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810299/ https://www.ncbi.nlm.nih.gov/pubmed/29472897 http://dx.doi.org/10.3389/fmicb.2018.00038 |
work_keys_str_mv | AT peiyaxin microbialcommunitystructureandfunctionindicatetheseverityofchromiumcontaminationoftheyellowriver AT yuzhengsheng microbialcommunitystructureandfunctionindicatetheseverityofchromiumcontaminationoftheyellowriver AT jijing microbialcommunitystructureandfunctionindicatetheseverityofchromiumcontaminationoftheyellowriver AT khanaman microbialcommunitystructureandfunctionindicatetheseverityofchromiumcontaminationoftheyellowriver AT lixiangkai microbialcommunitystructureandfunctionindicatetheseverityofchromiumcontaminationoftheyellowriver |