Cargando…

Effect of Sweetened Dried Cranberry Consumption on Urinary Proteome and Fecal Microbiome in Healthy Human Subjects

The relationship among diet, human health, and disease is an area of growing interest in biomarker research. Previous studies suggest that the consumption of cranberries (Vaccinium macrocarpon) could beneficially influence urinary and digestive health. The present study sought to determine if daily...

Descripción completa

Detalles Bibliográficos
Autores principales: Bekiares, Nell, Krueger, Christian G., Meudt, Jennifer J., Shanmuganayagam, Dhanansayan, Reed, Jess D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810433/
https://www.ncbi.nlm.nih.gov/pubmed/28618237
http://dx.doi.org/10.1089/omi.2016.0167
Descripción
Sumario:The relationship among diet, human health, and disease is an area of growing interest in biomarker research. Previous studies suggest that the consumption of cranberries (Vaccinium macrocarpon) could beneficially influence urinary and digestive health. The present study sought to determine if daily consumption of sweetened dried cranberries (SDC) changes the urinary proteome and fecal microbiome, as determined in a prospective sample of 10 healthy individuals. Baseline urine and fecal samples were collected from the subjects in the fasted (8–12 h) state. The subjects then consumed one serving (42 g) of SDC daily with lunch for 2 weeks. Urine and fecal samples were collected again the day after 2 weeks of SDC consumption. Orbitrap Q-Exactive mass spectrometry of urinary proteins showed that consumption of SDC resulted in changes to 22 urinary proteins. Multiplex sequencing of 16S ribosomal RNA genes in fecal samples indicated changes in relative abundance of several bacterial taxonomic units after consumption of SDC. There was a shift in the Firmicutes:Bacteroidetes ratio, increases in commensal bacteria, and decreases or the absence of bacteria associated with negative health effects. A decrease in uromodulin in all subjects and an increase in Akkermansia bacteria in most subjects were observed and warrant further investigation. Future larger clinical studies with multiomics and multitissue sampling designs are required to determine the effects of SDC consumption on nutrition and health.