Cargando…

A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have b...

Descripción completa

Detalles Bibliográficos
Autores principales: Aghamohammadi, Amirhossein, Ang, Mei Choo, A. Sundararajan, Elankovan, Weng, Ng Kok, Mogharrebi, Marzieh, Banihashem, Seyed Yashar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811006/
https://www.ncbi.nlm.nih.gov/pubmed/29438421
http://dx.doi.org/10.1371/journal.pone.0192246
_version_ 1783299797281669120
author Aghamohammadi, Amirhossein
Ang, Mei Choo
A. Sundararajan, Elankovan
Weng, Ng Kok
Mogharrebi, Marzieh
Banihashem, Seyed Yashar
author_facet Aghamohammadi, Amirhossein
Ang, Mei Choo
A. Sundararajan, Elankovan
Weng, Ng Kok
Mogharrebi, Marzieh
Banihashem, Seyed Yashar
author_sort Aghamohammadi, Amirhossein
collection PubMed
description Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.
format Online
Article
Text
id pubmed-5811006
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-58110062018-02-28 A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos Aghamohammadi, Amirhossein Ang, Mei Choo A. Sundararajan, Elankovan Weng, Ng Kok Mogharrebi, Marzieh Banihashem, Seyed Yashar PLoS One Research Article Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. Public Library of Science 2018-02-13 /pmc/articles/PMC5811006/ /pubmed/29438421 http://dx.doi.org/10.1371/journal.pone.0192246 Text en © 2018 Aghamohammadi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Aghamohammadi, Amirhossein
Ang, Mei Choo
A. Sundararajan, Elankovan
Weng, Ng Kok
Mogharrebi, Marzieh
Banihashem, Seyed Yashar
A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
title A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
title_full A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
title_fullStr A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
title_full_unstemmed A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
title_short A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
title_sort parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811006/
https://www.ncbi.nlm.nih.gov/pubmed/29438421
http://dx.doi.org/10.1371/journal.pone.0192246
work_keys_str_mv AT aghamohammadiamirhossein aparallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT angmeichoo aparallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT asundararajanelankovan aparallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT wengngkok aparallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT mogharrebimarzieh aparallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT banihashemseyedyashar aparallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT aghamohammadiamirhossein parallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT angmeichoo parallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT asundararajanelankovan parallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT wengngkok parallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT mogharrebimarzieh parallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos
AT banihashemseyedyashar parallelspatiotemporalsaliencyanddiscriminativeonlinelearningmethodforvisualtargettrackinginaerialvideos