Cargando…

Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses

Autosomal recessive polycystic kidney disease (ARPKD) is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in t...

Descripción completa

Detalles Bibliográficos
Autor principal: Bergmann, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811498/
https://www.ncbi.nlm.nih.gov/pubmed/29479522
http://dx.doi.org/10.3389/fped.2017.00221
_version_ 1783299869967908864
author Bergmann, Carsten
author_facet Bergmann, Carsten
author_sort Bergmann, Carsten
collection PubMed
description Autosomal recessive polycystic kidney disease (ARPKD) is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD). A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD). For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS) which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach for these indications. Interpretation of genetic data becomes the challenge and requires deep clinical understanding.
format Online
Article
Text
id pubmed-5811498
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-58114982018-02-23 Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses Bergmann, Carsten Front Pediatr Pediatrics Autosomal recessive polycystic kidney disease (ARPKD) is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD). A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD). For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS) which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach for these indications. Interpretation of genetic data becomes the challenge and requires deep clinical understanding. Frontiers Media S.A. 2018-02-09 /pmc/articles/PMC5811498/ /pubmed/29479522 http://dx.doi.org/10.3389/fped.2017.00221 Text en Copyright © 2018 Bergmann. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pediatrics
Bergmann, Carsten
Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses
title Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses
title_full Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses
title_fullStr Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses
title_full_unstemmed Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses
title_short Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses
title_sort genetics of autosomal recessive polycystic kidney disease and its differential diagnoses
topic Pediatrics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811498/
https://www.ncbi.nlm.nih.gov/pubmed/29479522
http://dx.doi.org/10.3389/fped.2017.00221
work_keys_str_mv AT bergmanncarsten geneticsofautosomalrecessivepolycystickidneydiseaseanditsdifferentialdiagnoses