Cargando…

Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli

PURPOSE: To determine if a new photoacoustic imaging (PAI) system successfully depicts (1) peripheral arteries and (2) microvascular circulatory changes in response to thermal stimuli. METHODS: Following ethical permission, 8 consenting subjects underwent PAI of the dorsalis pedis (DP) artery, and 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Plumb, Andrew A., Huynh, Nam Trung, Guggenheim, Jamie, Zhang, Edward, Beard, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811589/
https://www.ncbi.nlm.nih.gov/pubmed/29018924
http://dx.doi.org/10.1007/s00330-017-5080-9
Descripción
Sumario:PURPOSE: To determine if a new photoacoustic imaging (PAI) system successfully depicts (1) peripheral arteries and (2) microvascular circulatory changes in response to thermal stimuli. METHODS: Following ethical permission, 8 consenting subjects underwent PAI of the dorsalis pedis (DP) artery, and 13 completed PAI of the index fingertip. Finger images were obtained after immersion in warm (30-35 °C) or cold (10-15 °C) water to promote vasodilation or vasoconstriction. The PAI instrument used a Fabry-Perot interferometeric ultrasound sensor and a 30-Hz 750-nm pulsed excitation laser. Volumetric images were acquired through a 14 × 14 × 14-mm volume over 90 s. Images were evaluated subjectively and quantitatively to determine if PAI could depict cold-induced vasoconstriction. The full width at half maximum (FWHM) of resolvable vessels was measured. RESULTS: Fingertip vessels were visible in all participants, with mean FWHM of 125 μm. Two radiologists used PAI to correctly identify vasoconstricted fingertip capillary beds with 100% accuracy (95% CI 77.2-100.0%, p < 0.001). The number of voxels exhibiting vascular signal was significantly smaller after cold water immersion (cold: 5263 voxels; warm: 363,470 voxels, p < 0.001). The DP artery was visible in 7/8 participants (87.5%). CONCLUSION: PAI achieves rapid, volumetric, high-resolution imaging of peripheral limb vessels and the microvasculature and is responsive to vasomotor changes induced by thermal stimuli. KEY POINTS: • Fabry-Perot interferometer-based photoacoustic imaging (PAI) generates volumetric, high-resolution images of the peripheral vasculature. • The system reliably detects thermally induced peripheral vasoconstriction (100% correct identification rate, p < 0.001). • Vessels measuring less than 100 μm in diameter can be depicted in vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00330-017-5080-9) contains supplementary material, which is available to authorized users.