Cargando…
Quantitative MRI and spectroscopy of bone marrow
Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the idea...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811907/ https://www.ncbi.nlm.nih.gov/pubmed/28570033 http://dx.doi.org/10.1002/jmri.25769 |
_version_ | 1783299938115911680 |
---|---|
author | Karampinos, Dimitrios C. Ruschke, Stefan Dieckmeyer, Michael Diefenbach, Maximilian Franz, Daniela Gersing, Alexandra S. Krug, Roland Baum, Thomas |
author_facet | Karampinos, Dimitrios C. Ruschke, Stefan Dieckmeyer, Michael Diefenbach, Maximilian Franz, Daniela Gersing, Alexandra S. Krug, Roland Baum, Thomas |
author_sort | Karampinos, Dimitrios C. |
collection | PubMed |
description | Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. |
format | Online Article Text |
id | pubmed-5811907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58119072018-02-16 Quantitative MRI and spectroscopy of bone marrow Karampinos, Dimitrios C. Ruschke, Stefan Dieckmeyer, Michael Diefenbach, Maximilian Franz, Daniela Gersing, Alexandra S. Krug, Roland Baum, Thomas J Magn Reson Imaging Review Articles Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. John Wiley and Sons Inc. 2017-06-01 2018-02 /pmc/articles/PMC5811907/ /pubmed/28570033 http://dx.doi.org/10.1002/jmri.25769 Text en © 2017 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Review Articles Karampinos, Dimitrios C. Ruschke, Stefan Dieckmeyer, Michael Diefenbach, Maximilian Franz, Daniela Gersing, Alexandra S. Krug, Roland Baum, Thomas Quantitative MRI and spectroscopy of bone marrow |
title | Quantitative MRI and spectroscopy of bone marrow |
title_full | Quantitative MRI and spectroscopy of bone marrow |
title_fullStr | Quantitative MRI and spectroscopy of bone marrow |
title_full_unstemmed | Quantitative MRI and spectroscopy of bone marrow |
title_short | Quantitative MRI and spectroscopy of bone marrow |
title_sort | quantitative mri and spectroscopy of bone marrow |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811907/ https://www.ncbi.nlm.nih.gov/pubmed/28570033 http://dx.doi.org/10.1002/jmri.25769 |
work_keys_str_mv | AT karampinosdimitriosc quantitativemriandspectroscopyofbonemarrow AT ruschkestefan quantitativemriandspectroscopyofbonemarrow AT dieckmeyermichael quantitativemriandspectroscopyofbonemarrow AT diefenbachmaximilian quantitativemriandspectroscopyofbonemarrow AT franzdaniela quantitativemriandspectroscopyofbonemarrow AT gersingalexandras quantitativemriandspectroscopyofbonemarrow AT krugroland quantitativemriandspectroscopyofbonemarrow AT baumthomas quantitativemriandspectroscopyofbonemarrow |