Cargando…

The Role of Mas Receptor on Renal Hemodynamic Responses to Angiotensin 1-7 in Both Irreversible and Reversible Unilateral Ureteral Obstruction Rats

BACKGROUND: Unilateral ureteral obstruction (UUO) alters the expression of renin-angiotensin system (RAS) components and angiotensin 1-7 (Ang 1-7) as a main arm of RAS is affected by UUO. The role of Mas receptor antagonist (A779) was examined in renal hemodynamic responses to Ang 1-7 in 3-day UUO a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassanshahi, Jalal, Nematbakhsh, Mehdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812086/
https://www.ncbi.nlm.nih.gov/pubmed/29456983
http://dx.doi.org/10.4103/abr.abr_176_17
Descripción
Sumario:BACKGROUND: Unilateral ureteral obstruction (UUO) alters the expression of renin-angiotensin system (RAS) components and angiotensin 1-7 (Ang 1-7) as a main arm of RAS is affected by UUO. The role of Mas receptor antagonist (A779) was examined in renal hemodynamic responses to Ang 1-7 in 3-day UUO and UUO removal (RUUO) in rats. MATERIALS AND METHODS: Forty-five male Wistar rats were randomly divided into three groups of sham operated, UUO, and RUUO, while each group was divided into two subgroups treated with vehicle or A779. Renal blood flow (RBF) and renal vascular resistance (RVR) responses to graded Ang 1-7 infusion were measured at controlled renal perfusion pressure. RESULTS: Mean arterial pressure response to Ang 1-7 was increased in vehicle-treated subgroup significantly (P < 0.05) when compared with A779-treated subgroup. However, such observation was not seen in UUO and RUUO rats. The graded Ang 1-7 infusion increased RBF and decreased RVR significantly in vehicle-treated rats (P < 0.005). Furthermore, a significant difference was found between vehicle and A779-treated subgroups in sham, UUO, and RUUO groups (P < 0.005). CONCLUSION: Ang 1-7 could alter the kidney hemodynamics responses in ureteral obstruction models.