Cargando…
The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists
BACKGROUND: Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812577/ https://www.ncbi.nlm.nih.gov/pubmed/29444097 http://dx.doi.org/10.1371/journal.pone.0191644 |
_version_ | 1783300050923814912 |
---|---|
author | Woods, Amy L. Rice, Anthony J. Garvican-Lewis, Laura A. Wallett, Alice M. Lundy, Bronwen Rogers, Margot A. Welvaert, Marijke Halson, Shona McKune, Andrew Thompson, Kevin G. |
author_facet | Woods, Amy L. Rice, Anthony J. Garvican-Lewis, Laura A. Wallett, Alice M. Lundy, Bronwen Rogers, Margot A. Welvaert, Marijke Halson, Shona McKune, Andrew Thompson, Kevin G. |
author_sort | Woods, Amy L. |
collection | PubMed |
description | BACKGROUND: Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigate how an intensified training period, designed to elicit overreaching, affects RMR, body composition, and performance in trained endurance athletes, and to elucidate underlying mechanisms. METHOD: Thirteen (n = 13) trained male cyclists completed a six-week training program consisting of a “Baseline” week (100% of regular training load), a “Build” week (~120% of Baseline load), two “Loading” weeks (~140, 150% of Baseline load, respectively) and two “Recovery” weeks (~80% of Baseline load). Training comprised of a combination of laboratory based interval sessions and on-road cycling. RMR, body composition, energy intake, appetite, heart rate variability (HRV), cycling performance, biochemical markers and mood responses were assessed at multiple time points throughout the six-week period. Data were analysed using a linear mixed modeling approach. RESULTS: The intensified training period elicited significant decreases in RMR (F((5,123.36)) = 12.0947, p = <0.001), body mass (F((2,19.242)) = 4.3362, p = 0.03), fat mass (F((2,20.35)) = 56.2494, p = <0.001) and HRV (F((2,22.608)) = 6.5212, p = 0.005); all of which improved following a period of recovery. A state of overreaching was induced, as identified by a reduction in anaerobic performance (F((5,121.87)) = 8.2622, p = <0.001), aerobic performance (F((5,118.26)) = 2.766, p = 0.02) and increase in total mood disturbance (F((5, 110.61)) = 8.1159, p = <0.001). CONCLUSION: Intensified training periods elicit greater energy demands in trained cyclists, which, if not sufficiently compensated with increased dietary intake, appears to provoke a cascade of metabolic, hormonal and neural responses in an attempt to restore homeostasis and conserve energy. The proactive monitoring of energy intake, power output, mood state, body mass and HRV during intensified training periods may alleviate fatigue and attenuate the observed decrease in RMR, providing more optimal conditions for a positive training adaptation. |
format | Online Article Text |
id | pubmed-5812577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58125772018-02-28 The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists Woods, Amy L. Rice, Anthony J. Garvican-Lewis, Laura A. Wallett, Alice M. Lundy, Bronwen Rogers, Margot A. Welvaert, Marijke Halson, Shona McKune, Andrew Thompson, Kevin G. PLoS One Research Article BACKGROUND: Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigate how an intensified training period, designed to elicit overreaching, affects RMR, body composition, and performance in trained endurance athletes, and to elucidate underlying mechanisms. METHOD: Thirteen (n = 13) trained male cyclists completed a six-week training program consisting of a “Baseline” week (100% of regular training load), a “Build” week (~120% of Baseline load), two “Loading” weeks (~140, 150% of Baseline load, respectively) and two “Recovery” weeks (~80% of Baseline load). Training comprised of a combination of laboratory based interval sessions and on-road cycling. RMR, body composition, energy intake, appetite, heart rate variability (HRV), cycling performance, biochemical markers and mood responses were assessed at multiple time points throughout the six-week period. Data were analysed using a linear mixed modeling approach. RESULTS: The intensified training period elicited significant decreases in RMR (F((5,123.36)) = 12.0947, p = <0.001), body mass (F((2,19.242)) = 4.3362, p = 0.03), fat mass (F((2,20.35)) = 56.2494, p = <0.001) and HRV (F((2,22.608)) = 6.5212, p = 0.005); all of which improved following a period of recovery. A state of overreaching was induced, as identified by a reduction in anaerobic performance (F((5,121.87)) = 8.2622, p = <0.001), aerobic performance (F((5,118.26)) = 2.766, p = 0.02) and increase in total mood disturbance (F((5, 110.61)) = 8.1159, p = <0.001). CONCLUSION: Intensified training periods elicit greater energy demands in trained cyclists, which, if not sufficiently compensated with increased dietary intake, appears to provoke a cascade of metabolic, hormonal and neural responses in an attempt to restore homeostasis and conserve energy. The proactive monitoring of energy intake, power output, mood state, body mass and HRV during intensified training periods may alleviate fatigue and attenuate the observed decrease in RMR, providing more optimal conditions for a positive training adaptation. Public Library of Science 2018-02-14 /pmc/articles/PMC5812577/ /pubmed/29444097 http://dx.doi.org/10.1371/journal.pone.0191644 Text en © 2018 Woods et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Woods, Amy L. Rice, Anthony J. Garvican-Lewis, Laura A. Wallett, Alice M. Lundy, Bronwen Rogers, Margot A. Welvaert, Marijke Halson, Shona McKune, Andrew Thompson, Kevin G. The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists |
title | The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists |
title_full | The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists |
title_fullStr | The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists |
title_full_unstemmed | The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists |
title_short | The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists |
title_sort | effects of intensified training on resting metabolic rate (rmr), body composition and performance in trained cyclists |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812577/ https://www.ncbi.nlm.nih.gov/pubmed/29444097 http://dx.doi.org/10.1371/journal.pone.0191644 |
work_keys_str_mv | AT woodsamyl theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT riceanthonyj theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT garvicanlewislauraa theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT wallettalicem theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT lundybronwen theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT rogersmargota theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT welvaertmarijke theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT halsonshona theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT mckuneandrew theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT thompsonkeving theeffectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT woodsamyl effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT riceanthonyj effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT garvicanlewislauraa effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT wallettalicem effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT lundybronwen effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT rogersmargota effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT welvaertmarijke effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT halsonshona effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT mckuneandrew effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists AT thompsonkeving effectsofintensifiedtrainingonrestingmetabolicratermrbodycompositionandperformanceintrainedcyclists |