Cargando…
Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes
Sorghum germplasm from West and Central Africa is cultivated in rainy and high humidity regions and is an important source of resistance genes to fungal diseases. Mold and anthracnose are two important biotic constraints to sorghum production in wet areas worldwide. Here, 158 National Plant Germplas...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812598/ https://www.ncbi.nlm.nih.gov/pubmed/29444109 http://dx.doi.org/10.1371/journal.pone.0191877 |
_version_ | 1783300055850024960 |
---|---|
author | Cuevas, Hugo E. Prom, Louis K. Rosa-Valentin, Giseiry |
author_facet | Cuevas, Hugo E. Prom, Louis K. Rosa-Valentin, Giseiry |
author_sort | Cuevas, Hugo E. |
collection | PubMed |
description | Sorghum germplasm from West and Central Africa is cultivated in rainy and high humidity regions and is an important source of resistance genes to fungal diseases. Mold and anthracnose are two important biotic constraints to sorghum production in wet areas worldwide. Here, 158 National Plant Germplasm System (NPGS) accessions from Senegal were evaluated for agronomic traits, anthracnose, and grain mold resistance at two locations, and genetically characterized according to 20 simple sequence repeat markers. A total of 221 alleles were amplified with an average of 11 alleles per locus. Each accession had a unique genetic profile (i.e., no duplicates), and the average genetic distance between accessions was 0.42. Population structure and cluster analysis separated the collection into four populations with pairwise F(ST) values >0.15. Three of the populations were composed of Guinea-race sorghum germplasm, and one included multiple races. Anthracnose resistant accessions were present at high frequency and evenly distributed among the three Guinea-race populations. Fourteen accessions showed resistance to grain mold, and eight were resistant to both diseases. These results indicated that the NPGS of Senegal is a genetically diverse collection with a high frequency of disease resistant accessions. Nevertheless, its population structure suggests the presence of few sources of resistance to both grain mold and anthracnose, which are fixed in the germplasm. The phenotypic and genotypic information for these accessions provides a valuable resource for its correct use to broaden the genetic base of breeding programs. |
format | Online Article Text |
id | pubmed-5812598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58125982018-02-28 Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes Cuevas, Hugo E. Prom, Louis K. Rosa-Valentin, Giseiry PLoS One Research Article Sorghum germplasm from West and Central Africa is cultivated in rainy and high humidity regions and is an important source of resistance genes to fungal diseases. Mold and anthracnose are two important biotic constraints to sorghum production in wet areas worldwide. Here, 158 National Plant Germplasm System (NPGS) accessions from Senegal were evaluated for agronomic traits, anthracnose, and grain mold resistance at two locations, and genetically characterized according to 20 simple sequence repeat markers. A total of 221 alleles were amplified with an average of 11 alleles per locus. Each accession had a unique genetic profile (i.e., no duplicates), and the average genetic distance between accessions was 0.42. Population structure and cluster analysis separated the collection into four populations with pairwise F(ST) values >0.15. Three of the populations were composed of Guinea-race sorghum germplasm, and one included multiple races. Anthracnose resistant accessions were present at high frequency and evenly distributed among the three Guinea-race populations. Fourteen accessions showed resistance to grain mold, and eight were resistant to both diseases. These results indicated that the NPGS of Senegal is a genetically diverse collection with a high frequency of disease resistant accessions. Nevertheless, its population structure suggests the presence of few sources of resistance to both grain mold and anthracnose, which are fixed in the germplasm. The phenotypic and genotypic information for these accessions provides a valuable resource for its correct use to broaden the genetic base of breeding programs. Public Library of Science 2018-02-14 /pmc/articles/PMC5812598/ /pubmed/29444109 http://dx.doi.org/10.1371/journal.pone.0191877 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Cuevas, Hugo E. Prom, Louis K. Rosa-Valentin, Giseiry Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes |
title | Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes |
title_full | Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes |
title_fullStr | Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes |
title_full_unstemmed | Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes |
title_short | Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes |
title_sort | population structure of the npgs senegalese sorghum collection and its evaluation to identify new disease resistant genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812598/ https://www.ncbi.nlm.nih.gov/pubmed/29444109 http://dx.doi.org/10.1371/journal.pone.0191877 |
work_keys_str_mv | AT cuevashugoe populationstructureofthenpgssenegalesesorghumcollectionanditsevaluationtoidentifynewdiseaseresistantgenes AT promlouisk populationstructureofthenpgssenegalesesorghumcollectionanditsevaluationtoidentifynewdiseaseresistantgenes AT rosavalentingiseiry populationstructureofthenpgssenegalesesorghumcollectionanditsevaluationtoidentifynewdiseaseresistantgenes |