Cargando…
Leukemia inhibitory factor produced by fibroblasts within tumor stroma participates in invasion of oral squamous cell carcinoma
The interaction between cancer cells and the cancer stroma plays a crucial role in tumor progression and metastasis in diverse malignancies, including oral cancer. However, the mechanism underlying this interaction remains incompletely elucidated. Here, to investigate the interaction between oral ca...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812599/ https://www.ncbi.nlm.nih.gov/pubmed/29444110 http://dx.doi.org/10.1371/journal.pone.0191865 |
Sumario: | The interaction between cancer cells and the cancer stroma plays a crucial role in tumor progression and metastasis in diverse malignancies, including oral cancer. However, the mechanism underlying this interaction remains incompletely elucidated. Here, to investigate the interaction between oral cancer cells and fibroblasts, which are major cellular components of the tumor stroma, we conducted an in vitro study by using human oral squamous cell carcinoma (OSCC) cell lines and normal human dermal fibroblasts (NHDFs). The results of transwell assays revealed that the migration and invasion of 2 OSCC cell lines, HO1-N-1 and HSC3, were markedly stimulated upon coculturing with NHDFs. To investigate the factors that promote tumor invasion, we isolated NHDFs from cocultures prepared with HO1-N-1 cells and performed microarray analysis. Among the various genes that were upregulated, we identified the gene encoding leukemia inhibitory factor (LIF), and we focused on LIF in further analyses. We confirmed that all OSCC-derived conditioned media potently upregulated LIF expression in NHDFs, and the results of our transwell analysis demonstrated that NHDF-induced OSCC migration and invasion were inhibited by LIF-neutralizing antibodies. Furthermore, immunohistochemical analysis of patient samples revealed that in 44 out of 112 OSCC cases, LIF was expressed in the tumor stroma, particularly in cancer-associated fibroblasts (CAFs), and, notably, clinicopathological analyses confirmed that LIF expression in CAFs was significantly correlated with increased depth of tumor invasion. Collectively, our results suggest that OSCC stimulates fibroblasts to produce LIF, which, in turn, participates in cancer-cell invasion. Our finding offers a potential therapeutic strategy targeting the cancer stroma for the treatment of OSCC patients. |
---|