Cargando…

Scattered wave imaging of the oceanic plate in Cascadia

Fifty years after plate tectonic theory was developed, the defining mechanism of the plate is still widely debated. The relatively short, simple history of young ocean lithosphere makes it an ideal place to determine the property that defines a plate, yet the remoteness and harshness of the seafloor...

Descripción completa

Detalles Bibliográficos
Autores principales: Rychert, Catherine A., Harmon, Nicholas, Tharimena, Saikiran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812736/
https://www.ncbi.nlm.nih.gov/pubmed/29457132
http://dx.doi.org/10.1126/sciadv.aao1908
Descripción
Sumario:Fifty years after plate tectonic theory was developed, the defining mechanism of the plate is still widely debated. The relatively short, simple history of young ocean lithosphere makes it an ideal place to determine the property that defines a plate, yet the remoteness and harshness of the seafloor have made precise imaging challenging. We use S-to-P receiver functions to image discontinuities beneath newly formed lithosphere at the Juan de Fuca and Gorda Ridges. We image a strong negative discontinuity at the base of the plate increasing from 20 to 45 km depth beneath the 0- to 10-million-year-old seafloor and a positive discontinuity at the onset of melting at 90 to 130 km depth. Comparison with geodynamic models and experimental constraints indicates that the observed discontinuities cannot easily be reconciled with subsolidus mechanisms. Instead, partial melt may be required, which would decrease mantle viscosity and define the young oceanic plate.