Cargando…
A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits
In recent years, as a secondary analysis in genome-wide association studies (GWASs), conditional and joint multiple-SNP analysis (GCTA-COJO) has been successful in allowing the discovery of additional association signals within detected loci. This suggests that many loci mapped in GWASs harbor more...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812891/ https://www.ncbi.nlm.nih.gov/pubmed/29198721 http://dx.doi.org/10.1016/j.ajhg.2017.09.027 |
_version_ | 1783300083503071232 |
---|---|
author | Ning, Zheng Lee, Youngjo Joshi, Peter K. Wilson, James F. Pawitan, Yudi Shen, Xia |
author_facet | Ning, Zheng Lee, Youngjo Joshi, Peter K. Wilson, James F. Pawitan, Yudi Shen, Xia |
author_sort | Ning, Zheng |
collection | PubMed |
description | In recent years, as a secondary analysis in genome-wide association studies (GWASs), conditional and joint multiple-SNP analysis (GCTA-COJO) has been successful in allowing the discovery of additional association signals within detected loci. This suggests that many loci mapped in GWASs harbor more than a single causal variant. In order to interpret the underlying mechanism regulating a complex trait of interest in each discovered locus, researchers must assess the magnitude of allelic heterogeneity within the locus. We developed a penalized selection operator for jointly analyzing multiple variants (SOJO) within each mapped locus on the basis of LASSO (least absolute shrinkage and selection operator) regression derived from summary association statistics. We found that, compared to stepwise conditional multiple-SNP analysis, SOJO provided better sensitivity and specificity in predicting the number of alleles associated with complex traits in each locus. SOJO suggested causal variants potentially missed by GCTA-COJO. Compared to using top variants from genome-wide significant loci in GWAS, using SOJO increased the proportion of variance prediction for height by 65% without additional discovery samples or additional loci in the genome. Our empirical results indicate that human height is not only a highly polygenic trait, but also has high allelic heterogeneity within its established hundreds of loci. |
format | Online Article Text |
id | pubmed-5812891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-58128912018-06-07 A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits Ning, Zheng Lee, Youngjo Joshi, Peter K. Wilson, James F. Pawitan, Yudi Shen, Xia Am J Hum Genet Article In recent years, as a secondary analysis in genome-wide association studies (GWASs), conditional and joint multiple-SNP analysis (GCTA-COJO) has been successful in allowing the discovery of additional association signals within detected loci. This suggests that many loci mapped in GWASs harbor more than a single causal variant. In order to interpret the underlying mechanism regulating a complex trait of interest in each discovered locus, researchers must assess the magnitude of allelic heterogeneity within the locus. We developed a penalized selection operator for jointly analyzing multiple variants (SOJO) within each mapped locus on the basis of LASSO (least absolute shrinkage and selection operator) regression derived from summary association statistics. We found that, compared to stepwise conditional multiple-SNP analysis, SOJO provided better sensitivity and specificity in predicting the number of alleles associated with complex traits in each locus. SOJO suggested causal variants potentially missed by GCTA-COJO. Compared to using top variants from genome-wide significant loci in GWAS, using SOJO increased the proportion of variance prediction for height by 65% without additional discovery samples or additional loci in the genome. Our empirical results indicate that human height is not only a highly polygenic trait, but also has high allelic heterogeneity within its established hundreds of loci. Elsevier 2017-12-07 2017-12-05 /pmc/articles/PMC5812891/ /pubmed/29198721 http://dx.doi.org/10.1016/j.ajhg.2017.09.027 Text en © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ning, Zheng Lee, Youngjo Joshi, Peter K. Wilson, James F. Pawitan, Yudi Shen, Xia A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits |
title | A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits |
title_full | A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits |
title_fullStr | A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits |
title_full_unstemmed | A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits |
title_short | A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits |
title_sort | selection operator for summary association statistics reveals allelic heterogeneity of complex traits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812891/ https://www.ncbi.nlm.nih.gov/pubmed/29198721 http://dx.doi.org/10.1016/j.ajhg.2017.09.027 |
work_keys_str_mv | AT ningzheng aselectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT leeyoungjo aselectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT joshipeterk aselectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT wilsonjamesf aselectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT pawitanyudi aselectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT shenxia aselectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT ningzheng selectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT leeyoungjo selectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT joshipeterk selectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT wilsonjamesf selectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT pawitanyudi selectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits AT shenxia selectionoperatorforsummaryassociationstatisticsrevealsallelicheterogeneityofcomplextraits |