Cargando…

The Callosal Relay Model of Interhemispheric Communication: New Evidence from Effective Connectivity Analysis

Interhemispheric auditory connectivity via the corpus callosum has been demonstrated to be important for normal speech processing. According to the callosal relay model, directed information flow from the right to the left auditory cortex has been suggested, but this has not yet been proven. For thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinmann, Saskia, Meier, Jan, Nolte, Guido, Engel, Andreas K., Leicht, Gregor, Mulert, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813083/
https://www.ncbi.nlm.nih.gov/pubmed/28803269
http://dx.doi.org/10.1007/s10548-017-0583-x
Descripción
Sumario:Interhemispheric auditory connectivity via the corpus callosum has been demonstrated to be important for normal speech processing. According to the callosal relay model, directed information flow from the right to the left auditory cortex has been suggested, but this has not yet been proven. For this purpose, 33 healthy participants were investigated with 64-channel EEG while performing the dichotic listening task in which two different consonant–vowel syllables were presented simultaneously to the left (LE) and right ear (RE). eLORETA source estimation was used to investigate the functional (lagged phase synchronization/LPS) and effective (isolated effective coherence/ICoh) connectivity between right and left primary (PAC) and secondary auditory cortices (SAC) in the gamma-band (30–100 Hz) during right and left ear reports. The major finding was a significantly increased effective connectivity in the gamma-band from the right to the left SAC during conscious perception of LE stimuli. In addition, effective and functional connectivity was significantly enhanced during LE as compared to RE reports. These findings give novel insight into transcallosal information transfer during auditory perception by showing that LE performance requires causal interhemispheric inputs from the right to the left auditory cortices, and that this interaction is mediated by synchronized gamma-band oscillations.