Cargando…
Identification of influential observations in high-dimensional cancer survival data through the rank product test
BACKGROUND: Survival analysis is a statistical technique widely used in many fields of science, in particular in the medical area, and which studies the time until an event of interest occurs. Outlier detection in this context has gained great importance due to the fact that the identification of lo...
Autores principales: | Carrasquinha, Eunice, Veríssimo, André, Lopes, Marta B., Vinga, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813402/ https://www.ncbi.nlm.nih.gov/pubmed/29456628 http://dx.doi.org/10.1186/s13040-018-0162-z |
Ejemplares similares
-
Ensemble outlier detection and gene selection in triple-negative breast cancer data
por: Lopes, Marta B., et al.
Publicado: (2018) -
Modelling cancer outcomes of bone metastatic patients: combining survival data with N-Telopeptide of type I collagen (NTX) dynamics through joint models
por: Loureiro, Hugo, et al.
Publicado: (2019) -
Identification of influential spreaders in complex networks using HybridRank algorithm
por: Ahajjam, Sara, et al.
Publicado: (2018) -
inFRank: a ranking-based identification of influential genes in biological networks
por: Cui, Xiuliang, et al.
Publicado: (2016) -
DegreeCox – a network-based regularization method for survival analysis
por: Veríssimo, André, et al.
Publicado: (2016)