Cargando…
Modeling nearshore-offshore exchange in Lake Superior
Lake Superior′s ecosystem includes distinct nearshore and offshore food webs linked by hydrodynamic processes that transport water and tracers along and across shore. The scales over which these processes occur and their sensitivity to increasing summer surface temperatures are not well understood....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814091/ https://www.ncbi.nlm.nih.gov/pubmed/29447286 http://dx.doi.org/10.1371/journal.pone.0193183 |
_version_ | 1783300282369703936 |
---|---|
author | McKinney, Paul Tokos, Kathy S. Matsumoto, Katsumi |
author_facet | McKinney, Paul Tokos, Kathy S. Matsumoto, Katsumi |
author_sort | McKinney, Paul |
collection | PubMed |
description | Lake Superior′s ecosystem includes distinct nearshore and offshore food webs linked by hydrodynamic processes that transport water and tracers along and across shore. The scales over which these processes occur and their sensitivity to increasing summer surface temperatures are not well understood. This study investigated horizontal mixing between nearshore and offshore areas of Lake Superior over the 10-year period from 2003 to 2012 using a realistically forced three-dimensional numerical model and virtual tracers. An age tracer was used to characterize the time scales of horizontal mixing between nearshore areas of the lake where water depth is less than 100 m and deeper areas. The age of water in nearshore areas increased and decreased in an annual cycle corresponding to the lake′s dimictic cycle of vertical mixing and stratification. Interannual variability of mixing in the isothermal period was significantly correlated to average springtime wind speed, whereas variability during the stratified season was correlated to the average summer surface temperature. Dispersal of a passive tracer released from nine locations around the model lake’s perimeter was more extensive in late summer when stratification was established lakewide than in early summer. The distribution of eddies resolved in the model reflected differences between the early and late summer dispersal patterns. In the eastern part of the lake dispersal was primarily alongshore, reflecting counterclockwise coastal circulation. In the western part of the lake, cross-shore mixing was enhanced by cross-basin currents. |
format | Online Article Text |
id | pubmed-5814091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58140912018-03-02 Modeling nearshore-offshore exchange in Lake Superior McKinney, Paul Tokos, Kathy S. Matsumoto, Katsumi PLoS One Research Article Lake Superior′s ecosystem includes distinct nearshore and offshore food webs linked by hydrodynamic processes that transport water and tracers along and across shore. The scales over which these processes occur and their sensitivity to increasing summer surface temperatures are not well understood. This study investigated horizontal mixing between nearshore and offshore areas of Lake Superior over the 10-year period from 2003 to 2012 using a realistically forced three-dimensional numerical model and virtual tracers. An age tracer was used to characterize the time scales of horizontal mixing between nearshore areas of the lake where water depth is less than 100 m and deeper areas. The age of water in nearshore areas increased and decreased in an annual cycle corresponding to the lake′s dimictic cycle of vertical mixing and stratification. Interannual variability of mixing in the isothermal period was significantly correlated to average springtime wind speed, whereas variability during the stratified season was correlated to the average summer surface temperature. Dispersal of a passive tracer released from nine locations around the model lake’s perimeter was more extensive in late summer when stratification was established lakewide than in early summer. The distribution of eddies resolved in the model reflected differences between the early and late summer dispersal patterns. In the eastern part of the lake dispersal was primarily alongshore, reflecting counterclockwise coastal circulation. In the western part of the lake, cross-shore mixing was enhanced by cross-basin currents. Public Library of Science 2018-02-15 /pmc/articles/PMC5814091/ /pubmed/29447286 http://dx.doi.org/10.1371/journal.pone.0193183 Text en © 2018 McKinney et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article McKinney, Paul Tokos, Kathy S. Matsumoto, Katsumi Modeling nearshore-offshore exchange in Lake Superior |
title | Modeling nearshore-offshore exchange in Lake Superior |
title_full | Modeling nearshore-offshore exchange in Lake Superior |
title_fullStr | Modeling nearshore-offshore exchange in Lake Superior |
title_full_unstemmed | Modeling nearshore-offshore exchange in Lake Superior |
title_short | Modeling nearshore-offshore exchange in Lake Superior |
title_sort | modeling nearshore-offshore exchange in lake superior |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814091/ https://www.ncbi.nlm.nih.gov/pubmed/29447286 http://dx.doi.org/10.1371/journal.pone.0193183 |
work_keys_str_mv | AT mckinneypaul modelingnearshoreoffshoreexchangeinlakesuperior AT tokoskathys modelingnearshoreoffshoreexchangeinlakesuperior AT matsumotokatsumi modelingnearshoreoffshoreexchangeinlakesuperior |