Cargando…
A maximum-entropy model for predicting chromatin contacts
The packaging of DNA inside a nucleus shows complex structure stabilized by a host of DNA-bound factors. Both the distribution of these factors and the contacts between different genomic locations of the DNA can now be measured on a genome-wide scale. This has advanced the development of models aime...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814105/ https://www.ncbi.nlm.nih.gov/pubmed/29401453 http://dx.doi.org/10.1371/journal.pcbi.1005956 |
Sumario: | The packaging of DNA inside a nucleus shows complex structure stabilized by a host of DNA-bound factors. Both the distribution of these factors and the contacts between different genomic locations of the DNA can now be measured on a genome-wide scale. This has advanced the development of models aimed at predicting the conformation of DNA given only the locations of bound factors—the chromatin folding problem. Here we present a maximum-entropy model that is able to predict a contact map representation of structure given a sequence of bound factors. Non-local effects due to the sequence neighborhood around contacting sites are found to be important for making accurate predictions. Lastly, we show that the model can be used to infer a sequence of bound factors given only a measurement of structure. This opens up the possibility for efficiently predicting sequence regions that may play a role in generating cell-type specific structural differences. |
---|