Cargando…
Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia
Autism and schizophrenia share overlapping genetic etiology, common changes in brain structure and common cognitive deficits. A number of studies using resting state fMRI have shown that machine learning algorithms can distinguish between healthy controls and individuals diagnosed with either autism...
Autores principales: | Mastrovito, Dana, Hanson, Catherine, Hanson, Stephen Jose |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814383/ https://www.ncbi.nlm.nih.gov/pubmed/29487793 http://dx.doi.org/10.1016/j.nicl.2018.01.014 |
Ejemplares similares
-
Atypical resting-state functional brain connectivity in children with developmental coordination disorder
por: Van Dyck, Dorine, et al.
Publicado: (2021) -
Resting-state networks distinguish locked-in from vegetative state patients()
por: Roquet, Daniel, et al.
Publicado: (2016) -
Aberrant hemodynamic responses in autism: Implications for resting state fMRI functional connectivity studies
por: Yan, Wenjing, et al.
Publicado: (2018) -
Examining resting-state functional connectivity in first-episode schizophrenia with 7T fMRI and MEG
por: Lottman, Kristin K., et al.
Publicado: (2019) -
Dysbalanced Resting-State Functional Connectivity Within the Praxis Network Is Linked to Gesture Deficits in Schizophrenia
por: Wüthrich, Florian, et al.
Publicado: (2020)