Cargando…
A community approach to mortality prediction in sepsis via gene expression analysis
Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we p...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814463/ https://www.ncbi.nlm.nih.gov/pubmed/29449546 http://dx.doi.org/10.1038/s41467-018-03078-2 |
_version_ | 1783300349367418880 |
---|---|
author | Sweeney, Timothy E. Perumal, Thanneer M. Henao, Ricardo Nichols, Marshall Howrylak, Judith A. Choi, Augustine M. Bermejo-Martin, Jesús F. Almansa, Raquel Tamayo, Eduardo Davenport, Emma E. Burnham, Katie L. Hinds, Charles J. Knight, Julian C. Woods, Christopher W. Kingsmore, Stephen F. Ginsburg, Geoffrey S. Wong, Hector R. Parnell, Grant P. Tang, Benjamin Moldawer, Lyle L. Moore, Frederick E. Omberg, Larsson Khatri, Purvesh Tsalik, Ephraim L. Mangravite, Lara M. Langley, Raymond J. |
author_facet | Sweeney, Timothy E. Perumal, Thanneer M. Henao, Ricardo Nichols, Marshall Howrylak, Judith A. Choi, Augustine M. Bermejo-Martin, Jesús F. Almansa, Raquel Tamayo, Eduardo Davenport, Emma E. Burnham, Katie L. Hinds, Charles J. Knight, Julian C. Woods, Christopher W. Kingsmore, Stephen F. Ginsburg, Geoffrey S. Wong, Hector R. Parnell, Grant P. Tang, Benjamin Moldawer, Lyle L. Moore, Frederick E. Omberg, Larsson Khatri, Purvesh Tsalik, Ephraim L. Mangravite, Lara M. Langley, Raymond J. |
author_sort | Sweeney, Timothy E. |
collection | PubMed |
description | Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765–0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis. |
format | Online Article Text |
id | pubmed-5814463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58144632018-02-20 A community approach to mortality prediction in sepsis via gene expression analysis Sweeney, Timothy E. Perumal, Thanneer M. Henao, Ricardo Nichols, Marshall Howrylak, Judith A. Choi, Augustine M. Bermejo-Martin, Jesús F. Almansa, Raquel Tamayo, Eduardo Davenport, Emma E. Burnham, Katie L. Hinds, Charles J. Knight, Julian C. Woods, Christopher W. Kingsmore, Stephen F. Ginsburg, Geoffrey S. Wong, Hector R. Parnell, Grant P. Tang, Benjamin Moldawer, Lyle L. Moore, Frederick E. Omberg, Larsson Khatri, Purvesh Tsalik, Ephraim L. Mangravite, Lara M. Langley, Raymond J. Nat Commun Article Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765–0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis. Nature Publishing Group UK 2018-02-15 /pmc/articles/PMC5814463/ /pubmed/29449546 http://dx.doi.org/10.1038/s41467-018-03078-2 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sweeney, Timothy E. Perumal, Thanneer M. Henao, Ricardo Nichols, Marshall Howrylak, Judith A. Choi, Augustine M. Bermejo-Martin, Jesús F. Almansa, Raquel Tamayo, Eduardo Davenport, Emma E. Burnham, Katie L. Hinds, Charles J. Knight, Julian C. Woods, Christopher W. Kingsmore, Stephen F. Ginsburg, Geoffrey S. Wong, Hector R. Parnell, Grant P. Tang, Benjamin Moldawer, Lyle L. Moore, Frederick E. Omberg, Larsson Khatri, Purvesh Tsalik, Ephraim L. Mangravite, Lara M. Langley, Raymond J. A community approach to mortality prediction in sepsis via gene expression analysis |
title | A community approach to mortality prediction in sepsis via gene expression analysis |
title_full | A community approach to mortality prediction in sepsis via gene expression analysis |
title_fullStr | A community approach to mortality prediction in sepsis via gene expression analysis |
title_full_unstemmed | A community approach to mortality prediction in sepsis via gene expression analysis |
title_short | A community approach to mortality prediction in sepsis via gene expression analysis |
title_sort | community approach to mortality prediction in sepsis via gene expression analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814463/ https://www.ncbi.nlm.nih.gov/pubmed/29449546 http://dx.doi.org/10.1038/s41467-018-03078-2 |
work_keys_str_mv | AT sweeneytimothye acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT perumalthanneerm acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT henaoricardo acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT nicholsmarshall acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT howrylakjuditha acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT choiaugustinem acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT bermejomartinjesusf acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT almansaraquel acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT tamayoeduardo acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT davenportemmae acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT burnhamkatiel acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT hindscharlesj acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT knightjulianc acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT woodschristopherw acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT kingsmorestephenf acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT ginsburggeoffreys acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT wonghectorr acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT parnellgrantp acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT tangbenjamin acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT moldawerlylel acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT moorefredericke acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT omberglarsson acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT khatripurvesh acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT tsalikephraiml acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT mangravitelaram acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT langleyraymondj acommunityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT sweeneytimothye communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT perumalthanneerm communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT henaoricardo communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT nicholsmarshall communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT howrylakjuditha communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT choiaugustinem communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT bermejomartinjesusf communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT almansaraquel communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT tamayoeduardo communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT davenportemmae communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT burnhamkatiel communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT hindscharlesj communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT knightjulianc communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT woodschristopherw communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT kingsmorestephenf communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT ginsburggeoffreys communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT wonghectorr communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT parnellgrantp communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT tangbenjamin communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT moldawerlylel communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT moorefredericke communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT omberglarsson communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT khatripurvesh communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT tsalikephraiml communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT mangravitelaram communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis AT langleyraymondj communityapproachtomortalitypredictioninsepsisviageneexpressionanalysis |