Cargando…

Relevance of neuroimaging for neurocognitive and behavioral outcome after pediatric traumatic brain injury

This study aims to (1) investigate the neuropathology of mild to severe pediatric TBI and (2) elucidate the predictive value of conventional and innovative neuroimaging for functional outcome. Children aged 8–14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI a...

Descripción completa

Detalles Bibliográficos
Autores principales: Königs, Marsh, Pouwels, Petra JW, Ernest van Heurn, LW, Bakx, Roel, Jeroen Vermeulen, R, Carel Goslings, J, Poll-The, Bwee Tien, van der Wees, Marleen, Catsman-Berrevoets, Coriene E, Oosterlaan, Jaap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814510/
https://www.ncbi.nlm.nih.gov/pubmed/28092022
http://dx.doi.org/10.1007/s11682-017-9673-3
Descripción
Sumario:This study aims to (1) investigate the neuropathology of mild to severe pediatric TBI and (2) elucidate the predictive value of conventional and innovative neuroimaging for functional outcome. Children aged 8–14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mild(RF+), n = 20) or moderate/severe TBI (n = 17) at 2.8 years post-injury. Neuroimaging measures included: acute computed tomography (CT), volumetric analysis on post-acute conventional T1-weighted magnetic resonance imaging (MRI) and post-acute diffusion tensor imaging (DTI, analyzed using tract-based spatial statistics and voxel-wise regression). Functional outcome was measured using Common Data Elements for neurocognitive and behavioral functioning. The results show that intracranial pathology on acute CT-scans was more prevalent after moderate/severe TBI (65%) than after mild(RF+) TBI (35%; p = .035), while both groups had decreased white matter volume on conventional MRI (ps ≤ .029, ds ≥ −0.74). The moderate/severe TBI group further showed decreased fractional anisotropy (FA) in a widespread cluster affecting all white matter tracts, in which regional associations with neurocognitive functioning were observed (FSIQ, Digit Span and RAVLT Encoding) that consistently involved the corpus callosum. FA had superior predictive value for functional outcome (i.e. intelligence, attention and working memory, encoding in verbal memory and internalizing problems) relative to acute CT-scanning (i.e. internalizing problems) and conventional MRI (no predictive value). We conclude that children with mild(RF+) TBI and moderate/severe TBI are at risk of persistent white matter abnormality. Furthermore, DTI has superior predictive value for neurocognitive out-come relative to conventional neuroimaging. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11682-017-9673-3) contains supplementary material, which is available to authorized users.