Cargando…

Function analysis of 5′-UTR of the cellulosomal xyl-doc cluster in Clostridium papyrosolvens

BACKGROUND: Anaerobic, mesophilic, and cellulolytic Clostridium papyrosolvens produces an efficient cellulolytic extracellular complex named cellulosome that hydrolyzes plant cell wall polysaccharides into simple sugars. Its genome harbors two long cellulosomal clusters: cip-cel operon encoding majo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Xia, Ren, Zhenxing, Wang, Na, Cheng, Yin, Jiang, Yuanyuan, Wang, Yan, Xu, Chenggang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815224/
https://www.ncbi.nlm.nih.gov/pubmed/29467821
http://dx.doi.org/10.1186/s13068-018-1040-0
Descripción
Sumario:BACKGROUND: Anaerobic, mesophilic, and cellulolytic Clostridium papyrosolvens produces an efficient cellulolytic extracellular complex named cellulosome that hydrolyzes plant cell wall polysaccharides into simple sugars. Its genome harbors two long cellulosomal clusters: cip-cel operon encoding major cellulosome components (including scaffolding) and xyl-doc gene cluster encoding hemicellulases. Compared with works on cip-cel operon, there are much fewer studies on xyl-doc mainly due to its rare location in cellulolytic clostridia. Sequence analysis of xyl-doc revealed that it harbors a 5′ untranslated region (5′-UTR) which potentially plays a role in the regulation of downstream gene expression. Here, we analyzed the function of 5′-UTR of xyl-doc cluster in C. papyrosolvens in vivo via transformation technology developed in this study. RESULTS: In this study, we firstly developed an electrotransformation method for C. papyrosolvens DSM 2782 before the analysis of 5′-UTR of xyl-doc cluster. In the optimized condition, a field with an intensity of 7.5–9.0 kV/cm was applied to a cuvette (0.2 cm gap) containing a mixture of plasmid and late cell suspended in exponential phase to form a 5 ms pulse in a sucrose-containing buffer. Afterwards, the putative promoter and the 5′-UTR of xyl-doc cluster were determined by sequence alignment. It is indicated that xyl-doc possesses a long conservative 5′-UTR with a complex secondary structure encompassing at least two perfect stem-loops which are potential candidates for controlling the transcriptional termination. In the last step, we employed an oxygen-independent flavin-based fluorescent protein (FbFP) as a quantitative reporter to analyze promoter activity and 5′-UTR function in vivo. It revealed that 5′-UTR significantly blocked transcription of downstream genes, but corn stover can relieve its suppression. CONCLUSIONS: In the present study, our results demonstrated that 5′-UTR of the cellulosomal xyl-doc cluster blocks the transcriptional activity of promoter. However, some substrates, such as corn stover, can relieve the effect of depression of 5′-UTR. Thus, it is speculated that 5′-UTR of xyl-doc was a putative riboswitch to regulate the expression of downstream cellulosomal genes, which is helpful to understand the complex regulation of cellulosome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13068-018-1040-0) contains supplementary material, which is available to authorized users.