Cargando…
Optic nerve regeneration in the mouse is a complex trait modulated by genetic background
PURPOSE: The present study is designed to identify the influences of genetic background on optic nerve regeneration using the two parental strains (C57BL/6J and DBA/2J) and seven BXD recombinant inbred mouse strains. METHODS: To study regeneration in the optic nerve, Pten was knocked down in the ret...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Vision
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815339/ https://www.ncbi.nlm.nih.gov/pubmed/29463955 |
Sumario: | PURPOSE: The present study is designed to identify the influences of genetic background on optic nerve regeneration using the two parental strains (C57BL/6J and DBA/2J) and seven BXD recombinant inbred mouse strains. METHODS: To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using adenoassociated virus (AAV) delivery of shRNA, and a mild inflammatory response was induced with an intravitreal injection of zymosan with CPT-cAMP. The axons of the retinal ganglion cells were damaged by optic nerve crush (ONC). Following a 12-day survival period, regenerating axons were labeled by cholera toxin B, and 2 days later, the regenerating axons within the optic nerve were examined. The number of axons at 0.5 mm and 1 mm from the crush site were counted. In addition, we measured the distance that five axons had grown down the nerve and the longest distance a single axon reached. RESULTS: The analysis revealed a considerable amount of differential axonal regeneration across the seven BXD strains and the parental strains. There was a statistically significant difference (p=0.014 Mann–Whitney U test) in the regenerative capacity in the number of axons reaching 0.5 mm from a low of 236.1±24.4 axons in the BXD102 mice to a high of 759.8±79.2 axons in the BXD29 mice. There were also statistically significant differences (p=0.014 Mann–Whitney U test) in the distance axons traveled. Looking at a minimum of five axons, the shortest distance was 787.2±46.5 µm in the BXD102 mice, and the maximum distance was 2025.5±223.3 µm in the BXD29 mice. CONCLUSIONS: Differences in genetic background can have a profound effect on axonal regeneration causing a threefold increase in the number of regenerating axons at 0.5 mm from the crush site and a 2.5-fold increase in the distance traveled by at least five axons in the damaged optic nerve. |
---|